【题目】如图,在边长为4的菱形ABCD中,BD=4,E、F分别是AD、CD上的动点(包含端点),且AE+CF=4,连接BE、EF、FB.
(1)试探究BE与BF的数量关系,并证明你的结论;
(2)求EF的最大值与最小值.
![]()
参考答案:
【答案】(1)见解析(2)EF的最大值为4,最小值为
.
【解析】试题分析:(1)AE+CF=4,DF+CF=4,则DF=AE,根据题目已知条件可通过角边角证明
,从而证明BE=BF(2)可先证明BEF为等边三角形。那么BE=BF=EF,点E在AD上运动,当BE
AD时,BE最短,当E与A或D重合时最长。
解:(1)BE=BF,证明如下:
∵四边形ABCD是边长为4的菱形,BD=4,
∴△ABD、△CBD都是边长为4的正三角形,
∵AE+CF=4,
∴CF=4﹣AE=AD﹣AE=DE,
又∵BD=BC=4,∠BDE=∠C=60°,
在△BDE和△BCF中,
DE=DF,∠BDE=∠C,BD=BC,
∴△BDE≌△BCF(SAS),
∴BE=BF;
(2)∵△BDE≌△BCF,
∴∠EBD=∠FBC,
∴∠EBD+∠DBF=∠FBC+∠DBF,
∴∠EBF=∠DBC=60°,
又∵BE=BF,
∴△BEF是正三角形,
∴EF=BE=BF,
当动点E运动到点D或点A时,BE的最大值为4,
当BE⊥AD,即E为AD的中点时,BE的最小值为
,
∵EF=BE,
∴EF的最大值为4,最小值为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】数轴上,点A到原点的距离为2个单位长度,点B在原点右侧且到原点的距离为4个单位长度.则A,B两点间相距________个单位长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,AD是△ABC外角的平分线,已知∠BAC=∠ACD.

(1)求证:△ABC≌△CDA;
(2)若∠B=60°,求证:四边形ABCD是菱形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某服装店欲购进甲、乙两种新款运动服。甲款每套进价350元,乙款每套进价200元。该店计划用不低于7600元且不高于8000元的资金订购甲、乙两款运动服共30套
(1)该店订购这两款运动服,共有哪几种方案?
(2)若该店以甲款每套400元、乙款每套300元的价格全部售出,哪种方案获利最大?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:式子x﹣2的值为6,则式子3x﹣6的值为( )
A.9B.12C.18D.24
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知a,b,c是△ABC的三边,满足
,且a+b+c=12.(1)试求a,b,c的值;
(2)试求△ABC的面积.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.
(1)求证:四边形BDEF为平行四边形;
(2)当∠C=45°,BD=2时,求D,F两点间的距离.

相关试题