【题目】在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,
BE⊥MN于E.
(1)当直线MN绕点C旋转到图1的位置时,求证:DE=AD+BE;
(2)当直线MN绕点C旋转到图2的位置时,请写出DE、AD、BE之间的等量关系并加以证明.
(3)当直线MN绕点C旋转到图3的位置时,试问DE、AD、BE之间又有怎样的等量关系?请直接写出结论.
![]()
参考答案:
【答案】(1)证明见解析;(2)DE=AD-BE,证明见解析;(3)见解析.
【解析】(1)由已知AC=BC,∠ADC=∠CEB=90°,利用互余关系可证∠DAC=∠ECB,可证△ACD≌△CBE,得AD=CE,CD=BE,故AD+BE=CE+CD=DE;(2)此时,仍有△ACD≌△CBE,AD=CE,CD=BE,利用线段的和差关系得DE=AD-BE.
证明:(1)∵∠ADC=∠ACB=∠BEC=90°,
∴∠CAD+∠ACD=90°,∠BCE+∠CBE=90°,∠ACD+∠BCE=90°.
∴∠CAD=∠BCE.
∵AC=BC,
∴△ADC≌△CEB.
∴CE=AD,CD=BE.
∴DE=CE+CD=AD+BE.
(2)DE=AD﹣BE
证明:∵∠ADC=∠CEB=∠ACB=90°,
∴∠ACD=∠CBE.
又∵AC=BC,
∴△ACD≌△CBE.
∴CE=AD,CD=BE.
∴DE=CE﹣CD=AD﹣BE.
(3)DE=BE﹣AD(或AD=BE﹣DE,BE=AD+DE等).
易证得△ACD≌△CBE,
∴AD=CE,DC=BE,
∴DE=CD- CE =BE﹣AD.
“点睛”本题考查了用旋转法寻找证明三角形全等的条件,关键是利用全等三角形对应线段相等,将有关线段进行转化.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(2016·河北模拟)3个篮球队进行单循环比赛,总的比赛场次是多少?4个球队呢?5个球队呢?
-
科目: 来源: 题型:
查看答案和解析>>【题目】(2016山东省聊城市第17题)如图,在平面直角坐标系中,边长为1的正方形OA1B1C1的两边在坐标轴上,以它的对角线OB1为边作正方形OB1B2C2,再以正方形OB1B2C2的对角线OB2为边作正方形OB2B3C3,以此类推…、则正方形OB2015B2016C2016的顶点B2016的坐标是 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】把1.8075精确到0.01的近似数是_____.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(2016广西省贺州市第18题)在矩形ABCD中,∠B的角平分线BE与AD交于点E,∠BED的角平分线EF与DC交于点F,若AB=9,DF=2FC,则BC= .(结果保留根号)

-
科目: 来源: 题型:
查看答案和解析>>【题目】在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是分.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(2016山东省聊城市第25题)如图,已知抛物线y=ax2+bx+c经过点A(﹣3,0),B(9,0)和C(0,4).CD垂直于y轴,交抛物线于点D,DE垂直与x轴,垂足为E,l是抛物线的对称轴,点F是抛物线的顶点.
(1)求出二次函数的表达式以及点D的坐标;
(2)若Rt△AOC沿x轴向右平移到其直角边OC与对称轴l重合,再沿对称轴l向上平移到点C与点F重合,得到Rt△A1O1F,求此时Rt△A1O1F与矩形OCDE重叠部分的图形的面积;
(3)若Rt△AOC沿x轴向右平移t个单位长度(0<t≤6)得到Rt△A2O2C2,Rt△A2O2C2与Rt△OED重叠部分的图形面积记为S,求S与t之间的函数表达式,并写出自变量t的取值范围.

相关试题