【题目】如图,正方形ABCD的边长为1,AB边上有一动点P,连接PD,线段PD绕点P顺时针旋转90°后,得到线段PE,且PE交BC于F,连接DF,过点E作EQ⊥AB的延长线于点Q.
(1)求线段PQ的长;
(2)问:点P在何处时,△PFD∽△BFP,并说明理由.
![]()
参考答案:
【答案】(1)1(2)点P是AB的中点
【解析】
试题分析:(1)由题意得:PD=PE,∠DPE=90°,又由正方形ABCD的边长为1,易证得△ADP≌△QPE,然后由全等三角形的性质,求得线段PQ的长;
(2)易证得△DAP∽△PBF,又由△PFD∽△BFP,根据相似三角形的对应边成比例,可得证得PA=PB,则可求得答案.
试题解析:(1)根据题意得:PD=PE,∠DPE=90°,
∴∠APD+∠QPE=90°,
∵四边形ABCD是正方形,
∴∠A=90°,
∴∠ADP+∠APD=90°,
∴∠ADP=∠QPE,
∵EQ⊥AB,
∴∠A=∠Q=90°,
在△ADP和△QPE中,
,
∴△ADP≌△QPE(AAS),
∴PQ=AD=1;
(2)∵△PFD∽△BFP,
∴
,
∵∠ADP=∠EPB,∠CBP=∠A,
∴△DAP∽△PBF,
∴
,
∴
,
∴PA=PB,
∴PA=
AB=![]()
∴当PA=
,即点P是AB的中点时,△PFD∽△BFP.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)(﹣
)0÷(﹣2)﹣2﹣23×2﹣2
(2)(2x﹣1)(2x+1)﹣(x﹣6)(4x+3) -
科目: 来源: 题型:
查看答案和解析>>【题目】某中学为调查本校学生平均每天完成作业所用时间的情况,随机调查了50名同学,如图是根据调查所得数据绘制的统计图的一部分.
请根据以上信息,解答下列问题:
(1)将统计图补充完整;
(2)若该校共有1 800名学生,根据以上调查结果估计该校全体学生平均每天完成作业所用总时间.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,以△ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D,E.且
.(1)求证:AB=AC;
(2)若AB=10,BC=12,求cos∠ABD的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】点P(2,3)向下平移2个单位,所得点的坐标是 。
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市团委举办“我的中国梦”为主题的知识竞赛,甲、乙两所学校参赛人数相等,比赛结束后,发现学生成绩分别为70分、80分、90分、100分,并根据统计数据绘制了如下不完整的统计图表:

乙校成绩统计表
分数/分
人数/人
70
7
80
90
1
100
8
(1)在图①中,“80分”所在扇形的圆心角度数为________;
(2)请你将图②补充完整;
(3)求乙校成绩的平均分;
(4)经计算知s甲2=135,s乙2=175,请你根据这两个数据,对甲、乙两校成绩作出合理评价.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在一张矩形纸片ABCD中,AB=4,BC=8,点E,F分别在AD,BC上,将纸片ABCD沿直线EF折叠,点C落在AD上的一点H处,点D落在点G处,有以下四个结论:
①四边形CFHE是菱形;
②EC平分∠DCH;
③线段BF的取值范围为3≤BF≤4;
④当点H与点A重合时,EF=
.以上结论中,你认为正确的有( )个.

A.1 B.2 C.3 D.4
相关试题