【题目】老师设计了一个数学实验,给甲、乙、丙三名同学各一张写有已化为最简(没有同类项)的代数式的卡片,规则是两位同学的代数式相减等于第三位同学的代数式,则实验成功,甲、乙、丙的卡片如下,丙的卡片有一部分看不清楚了.
![]()
(1)计算出甲减乙的结果,并判断甲减乙能否使实验成功;
(2)嘉琪发现丙减甲可以使实验成功,请求出丙的代数式.
参考答案:
【答案】(1)甲减乙不能是实验成功;(2)3x2-5x+2.
【解析】
(1)根据题意列出关系式,去括号合并后即可作出判断;
(2)根据题意列出关系式,去括号合并即可确定出丙.
解:(1)根据题意得:![]()
![]()
,
由于丙卡片的常数项为2,结果与题意不符,因此甲减乙,实验不成功;
(2)根据题意得:丙表示的代数式为甲加乙.
即:![]()
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】探索n×n的正方形钉子板上(n是钉子板每边上的钉子数,每边上相邻钉子间的距离为1),连接任意两个钉子所得到的不同长度值的线段种数:
当n=2时,钉子板上所连不同线段的长度值只有1与
,所以不同长度值的线段只有2种,若用S表示不同长度值的线段种数,则S=2;当n=3时,钉子板上所连不同线段的长度值只有1,
,2,
,2
五种,比n=2时增加了3种,即S=2+3=5.(1)观察图形,填写下表:
钉子数(n×n)
S值
2×2
2
3×3
2+3
4×4
2+3+(____)
5×5
(________)
(2)写出(n-1)×(n-1)和n×n的两个钉子板上,不同长度值的线段种数之间的关系;(用式子或语言表述均可).
(3)对n×n的钉子板,写出用n表示S的代数式.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店销售每台A型电脑的利润为100元,销售每台B型电脑的利润为150元,该商店计划一次购进A,B两种型号的电脑共100台,设购进A型电脑x台,这100台电脑的销售总利润为y元.
(1)求y与x的函数关系式;
(2)该商店计划一次购进A,B两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,那么商店购进A型、B型电脑各多少台,才能使销售总利润最大?
-
科目: 来源: 题型:
查看答案和解析>>【题目】一次函数y=ax+b与二次函数y=ax2+bx+c在同一坐标系中的图像可能是 ( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】正方形ABCD,CEFG按如图放置,点B,C,E在同一条直线上,点P在BC边上,PA=PF,且∠APF=90°,连接AF交CD于点M,有下列结论:①EC=BP;②AP=AM;③∠BAP=∠GFP;④AB2+CE2=
AF2;⑤S正方形ABCD+S正方形CEFG=2S△APF.其中正确的是( )
A. ①②③ B. ①③④ C. ①②④⑤ D. ①③④⑤
-
科目: 来源: 题型:
查看答案和解析>>【题目】在ABCD中,已知AB=6,BE平分∠ABC交AD边于点E,点E将AD分为1:3两部分,则AD的长为( )
A. 8或24B. 8C. 24D. 9或24
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线
与x轴,y轴分别交于A,B两点,点
为直线
上一点,直线
过点C.
求m和b的值;
直线
与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x轴负方向运动
设点P的运动时间为t秒.①若点P在线段DA上,且
的面积为10,求t的值;②是否存在t的值,使
为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.
相关试题