【题目】如图,在平行四边形ABCD中,已知对角线AC、BD相交于点O,若E、F是AC上两动点,分别从A、C两点以相同的速度1cm/s向点O运动. ![]()
(1)当E与F不重合时,四边形DEBF是否是平行四边形?请说明理由;
(2)若AC=16cm,BD=12cm,点E,F在运动过程中,四边形DEBF能否为矩形?如能,求出此时的运动时间t的值,如不能,请说明理由.
参考答案:
【答案】
(1)解:当E与F不重合时,四边形DEBF是平行四边形
理由:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD;
∵E、F两动点,分别从A、C两点以相同的速度向C、A运动,
∴AE=CF;
∴OE=OF;
∴BD、EF互相平分;
∴四边形DEBF是平行四边形
(2)解:∵四边形DEBF是平行四边形,
∴当BD=EF时,四边形DEBF是矩形;
∵BD=12cm,
∴EF=12cm;
∴OE=OF=6cm;
∵AC=16cm;
∴OA=OC=8cm;
∴AE=2cm或AE=14cm;
由于动点的速度都是1cm/s,
所以t=2(s)或t=14(s);
故当运动时间t=2s或14s时,以D、E、B、F为顶点的四边形是矩形.
【解析】(1)判断四边形DEBF是否为平行四边形,需证明其对角线是否互相平分;已知了四边形ABCD是平行四边形,故OB=OD;而E、F速度相同,方向相反,故OE=OF;由此可证得BD、EF互相平分,即四边形DEBF是平行四边形;(2)若以D、E、B、F为顶点的四边形是矩形,则必有BD=EF,可据此求出时间t的值.
【考点精析】掌握平行四边形的判定与性质和矩形的判定方法是解答本题的根本,需要知道若一直线过平行四边形两对角线的交点,则这条直线被一组对边截下的线段以对角线的交点为中点,并且这两条直线二等分此平行四边形的面积;有一个角是直角的平行四边形叫做矩形;有三个角是直角的四边形是矩形;两条对角线相等的平行四边形是矩形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】2017年6月5日是第46个“世界环境日”,为提高学生的环保意识,某校组织该校2000名学生参加了“环保知识”竞赛,为了解“环保知识”的笔试情况,学校随机抽取了部分参赛同学的成绩,整理并绘制成如图所示的不完整的图表.
分数段
频数
频率
60≤x<70
30
0.1
70≤x<80
90
n
80≤x<90
m
0.4
90≤x<100
60
0.2
请你根据表中提供的信息,解答下列问题:

(1)此次调查的样本容量为;
(2)在表中:m= , n=;
(3)补全频数分布直方图;
(4)如果比赛成绩80分以上(含80分)为优秀,那么请你估计该校学生笔试成绩的优秀人数大约是名. -
科目: 来源: 题型:
查看答案和解析>>【题目】构造一个根为2和3的一元二次方程(写一个即可,不限形式)
-
科目: 来源: 题型:
查看答案和解析>>【题目】过度包装即浪费又污染环境,据测算,如果全国每年减少10%的过度包装纸用量,那么可减排二氧化碳3120000吨,把数3120000用科学记数法表示为( )
A.3.12×106
B.3.12×105
C.31.2×104
D.0.312×7 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,三条直线AB、CD和EF相交于一点O,∠COE+∠DOF=50°,∠BOE=70°,求∠AOD和∠BOD.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,木杆AB斜靠在墙壁上,∠OAB=30°,AB=4米.当木杆的上端A沿墙壁NO下滑时,木杆的底端B也随之沿着地面上的射线OM方向滑动.设木杆的顶端A匀速下滑到点O停止,则木杆的中点P到射线OM的距离y(米)与下滑的时间x(秒)之间的函数图象大致是( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果用(7,3)表示七年级三班,那么八年级二班可表示成____________.
相关试题