【题目】如图①,在Rt△ABC中∠C=90°,两条直角边长分别为a,b,斜边长为c.如图②,现将与Rt△ABC全等的四个直角三角形拼成一个正方形EFMN.
(1)根据勾股定理的知识,请直接写出a,b,c之间的数量关系;
(2)若正方形EFMN的面积为64,Rt△ABC的周长为18,求Rt△ABC的面积.
![]()
参考答案:
【答案】(1)a2+b2=c2;(2)9.
【解析】
(1)根据勾股定理得到a,b,c之间的数量关系;
(2)根据题意求出c,得到a+b的值,根据三角形的面积公式、完全平方公式计算,得到答案.
解:(1)由勾股定理得,a2+b2=c2;
(2)∵正方形EFMN的面积为64,
∴c2=64,即c=8,
∵Rt△ABC的周长为18,
∴a+b+c=18,
∴a+b=10,
则Rt△ABC的面积=
ab
=
[(a+b)2﹣(a2+b2)]
=9.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,菱形ABCD中,以A为圆心,AB为半径画弧,恰好过点C,已知AB=4,则图中阴影部分的面积为_______(结果保留π).

-
科目: 来源: 题型:
查看答案和解析>>【题目】A,B两站相距330千米,甲、乙两车都从A站出发开往B站,甲车先出发,且在途中C站停靠6分钟,甲车出发半小时后,乙车从A站直达B站后停止,两车之间的距离y(千米)与甲车行驶的时间x(小时)之间的函数图象如图,则乙车恰好追上甲车时距离C站有______千米.

-
科目: 来源: 题型:
查看答案和解析>>【题目】甲,乙,丙三人做一个抽牌游戏,三张纸牌上分别写有个数字0,x,y(x,y均为正整数,且x<y),每人抽一张纸牌,纸牌上的数字就是这一轮的得分.经过若干轮后(至少四轮),甲的总得分为20,乙的总得分为10,丙的总得分为9.则甲抽到x的次数最多为______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有这样一个问题探究函数
(b、c为常数)的图象和性质.元元根据学习函数的经验,对该函数的图象和性质进行了以下探究:下面是元元的探究过程,请你补充完整
x
……
﹣1
0
1
2
3
4
5
6
……
y
……
0
2.5
4
m
4
2.5
0
1
……
(1)根据上表信息,其中b=____,c=_____,m=______.
(2)如图,在下面平面直角坐标系中,描出以补全后的表中各对应值为坐标的点,并画出该函数的另一部分图象;
(3)观察函数图象,请写出该函数的一条性质:______.
(4)解决问题:若直线y=3n+2(n为常数)与该函数图象有3个交点时,求n的范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】2017年10月18日,党的十九大报告提出“乡村振兴”战略,之后各地发展乡村旅游,某村在2018年3月1日首次举办“百花节”,开园免费赏花,于是大批游客涌入该村赏花,吃农家饭买土特产,平均每人消费100元.
(1)据统计,某个周六早上开园后平均每小时有500人进园,两小时后,平均每小时有100人离园,园区规定,当园区内游客人数达到3000时,将停止进园,那么从开园起经过多少小时后停止进园?
(2)该村对园区加大建设和宣传力度,2019年3月1日,第二届“百花节”如期开园,同时规定进园门票费为每人60元,受各种因素影响,与2018年同期相比,人数在20000的基础上降低了a%,除门票外平均每人消费金额增长了
a%,园区总收入增长了
a%,求a的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平行四边形ABCD中,以AB为边作等边△ABE,点E在CD上,以BC为边作等边△BCF,点F在AE上,点G在BA延长线上且FG=FB.
(1)若CD=6,AF=3,求△ABF的面积;
(2)求证:BE=AG+CE.

相关试题