【题目】已知:如图,直线y=x+b与x轴交于点A(2,0),P为y轴上B点下方一点,以AP为腰作等腰直角三角形APM,点M落在第四象限,若PB=m(m>0),用含m的代数式表示点M的坐标是( )
![]()
A.(m-2,m+4)B.(m+2,m+4)C.(m+2,-m-4)D.(m-2,-m-4)
参考答案:
【答案】C
【解析】
先利用待定系数法求出直线AB的函数解析式,从而得OP的长,再证△PAO≌△MPN,得到OP=NM,OA=NP,进而用m表示出NM和ON,结合点M在第四象限,表示出点M的坐标即可.
直线y=x+b与x轴交于点A(2,0),
∴0=2+b,解得:b=-2,
∴直线AB的解析式为:y=x2,
令x=0,得y=-2,
∴B(0,-2),
∵PB=m,
∴OP=2+m,
作MN⊥y轴于点N.
∵△APM为等腰直角三角形,PM=PA,
∴∠APM=90°,
∴∠OPA+∠NPM=90°,
∵∠NMP+∠NPM=90°,
∴∠OPA=∠NMP,
在△PAO与△MPN中,
∵
,
∴△PAO≌△MPN(AAS),
∴OP=NM= m+2,OA=NP=2,
∴ON=2+m+2=4+m,MN=OP=2+m,
∵点M在第四象限,
∴点M的坐标为(2+m,4m).
故选C.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】清明时节,张老师和王老师组织八年级
班学生步行到距学校
千米的烈士陵园扫墓.出发时,王老师带领学生先出发,
分钟后,张老师骑自行车出发,张老师骑自行车的速度是学生步行速度的
倍,当学生到达烈士陵园时,张老师已经到达
个小时,并为大家买好了扫墓门票. (1)求学生的步行速度和张老师骑自行车的速度各是多少;
(2)当张老师追上学生时,距离烈士陵园还有多远?
-
科目: 来源: 题型:
查看答案和解析>>【题目】综合与探究:
如图,在平面直角坐标系中,直线
与
轴交于点
,与直线
交于点
, 直线
与
轴交于点
.(1)求直线
的函数表达式; (2)在线段
上找一点
,使得
与
的面积相等,求出点
的坐标; (3)y轴上有一动点
,直线
上有一动点
,若
是以线段
为斜边的等腰直角三角形,求出点
的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在Rt△ABC中,∠ACB = 90°.半径为1的⊙A与边AB相交于点D,与边AC相交于点E,连接DE并延长,与边BC的延长线交于点P.
(1)当∠B = 30°时,求证:△ABC∽△EPC;
(2)当∠B = 30°时,连接AP,若△AEP与△BDP相似,求CE的长;
(3)若CE = 2,BD = BC,求∠BPD的正切值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知点A(x1,y1)、B(x2,y2)在二次函数y=x2+mx+n的图象上,当x1=1、x2=3时,y1=y2.
(1)①求m;②若抛物线与x轴只有一个公共点,求n的值.
(2)若P(a,b1),Q(3,b2)是函数图象上的两点,且b1>b2,求实数a的取值范围.
(3)若对于任意实数x1、x2都有y1+y2≥2,求n的范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:点A是双曲线
在第一象限上的一动点,连接AO并延长交另一分支于点B,以AB为一边作等边三角形ABC,点C在第四象限,随着点A的运动,点C的位置也不断的变化,但始终在一函数图象上运动,则这个函数的解析式是( )A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】函数y=mx+n与
,其中m≠0,n≠0,那么它们在同一坐标系中的图象可能是( )A.
B.
C.
D.
相关试题