【题目】如图所示,在Rt△ABC中,∠C=90°,∠A=30°,AB边中点D到BC边距离为3 cm,现在AC边找点E,使BE+ED值最小,则BE+ED的最小值是________cm.
![]()
参考答案:
【答案】6
【解析】
将30°的Rt△ABC补成等边三角形
,知点B和点
关于AC对称.连接
D交AC于点E,则E即是所求作的点,且BE+ED的最小值即是DE的长.
解:如图:作点B关于AC对称点
,DF⊥BC,连接A
,
D. ,则
的长为BE+ED的最小值
![]()
在Rt△ABC中,∠ACB=90°,AB边中点D到BC边距离为3 cm,DF⊥BC
∴DF=3,∠DFB=∠ACB=90°
∴DF//AC
∵D为AB边中点,DF//AC
∴AC=2DF=6
∵点B、点
关于AC对称, ∠BAC=30°
∴
,
∴![]()
∴
是等边三角形
∴![]()
又∵
∴
=6
∴BE+ED的最小值即是DE的长为:6.
故答案为:6
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:① EF=BE+CF;②∠BGC=90°+
∠A;③点G到△ABC各边的距离相等;④设GD=m,AE+AF=n,则
=mn. 其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A. 了解“孝感市初中生每天课外阅读书籍时间的情况”最适合的调查方式是全面调查
B. 甲乙两人跳绳各10次,其成绩的平均数相等,
,则甲的成绩比乙稳定C. 三张分别画有菱形,等边三角形,圆的卡片,从中随机抽取一张,恰好抽到中心对称图形卡片的概率是

D. “任意画一个三角形,其内角和是
”这一事件是不可能事件 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB∥CD,∠DCE的角平分线CG的反向延长线和∠ABE的角平分线BF交于点F,∠E﹣∠F=33°,则∠E=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知如图,△ABC在平面直角坐标系XOY中,其中A(1,2),B(3,1),C(4,3),试解答下列各题:
(1)作出△ABC关于x轴对称的△A1B1C1,并写出△A1B1C1三个顶点的坐标;A1(________);B1(________);C1(________).
(2)作出△ABC关于直线a对称的△A2B2C2,并写出△A2B2C2三个顶点的坐标;A2(________);B2(________);C2(________).

-
科目: 来源: 题型:
查看答案和解析>>【题目】对于一个函数,如果它的自变量 x 与函数值 y 满足:当1≤x≤1 时,1≤y≤1,则称这个函数为“闭 函数”.例如:y=x,y=x 均是“闭函数”. 已知 y ax2 bx c(a0) 是“闭函数”,且抛物线经过点 A(1,1)和点 B(1,1),则 a 的取值范围是______________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,∠A=36°,AC的垂直平分线交AB于E,D为垂足,连结EC.
(1)求∠ECD的度数.
(2)若CE=9,求BC的长.

相关试题