【题目】谷歌人工智能AlphaGo机器人与李世石的围棋挑战赛引起人们的广泛关注,人工智能完胜李世石.某教学网站开设了有关人工智能的课程并策划了A,B两种网上学习的月收费方式:
![]()
设小明每月上网学习人工智能课程的时间为x小时,方案A,B的收费金额分别为yA元、yB元.
(1)当x≥50时,分别求出yA、yB与x之间的函数表达式;
(2)若小明3月份上该网站学习的时间为60小时,则他选择哪种方式上网学习合算?
参考答案:
【答案】(1) yA=6x-80,yB=8x-300;(2)选择B方式上网学习合算.
【解析】(1)根据收取费用=月使用费+超时单价×超过时间,可找出yA、yB关于x的函数关系式;
(2)将x=60分别代入yA、yB的表达式中得出y值进行比较,即可得出结论.
(1)当x≥50时,yA与x之间的函数表达式为yA=70+(x-25)×6=6x-80,
yB与x之间的函数表达式为yB=100+(x-50)×8=8x-300.
(2)当x=60时,yA=6×60-80=280,yB=8×60-300=180,
∴yA>yB.故选择B方式上网学习合算.
-
科目: 来源: 题型:
查看答案和解析>>【题目】设棱锥的顶点数为V,面数为F,棱数为E.
(1)观察与发现:三棱锥中,V3= ,F3= ,E3= ;
五棱锥中,V5= ,F5= ,E5= ;
(2)猜想:①十棱锥中,V10= ,F10= ,E10= ;
②n棱锥中,Vn= ,Fn= ,En= ;(用含有n的式子表示)
(3)探究:①棱锥的顶点数(V)与面数(F)之间的等量关系: ;
②棱锥的顶点数(V)、面数(F)、棱数(E)之间的等量关系:E= ;
(4)拓展:棱柱的顶点数(V)、面数(F)、棱数(E)之间是否也存在某种等量关系?若存在,试写出相应的等式;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,E是AB边的中点,F在AD边上,M,N分别是CD,BC边上的动点,若AB=AF=2,AD=3,则四边形EFMN周长的最小值是( )

A.2+
B.2
+2 
C.5+
D.8 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则点A2 019的坐标为____________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】一辆汽车和一辆摩托车分别从A,B两地去同一个城市,它们离A地的路程随时间变化的图象如图所示.则下列结论:①摩托车比汽车晚到1h;②A,B两地的路程为20km;③摩托车的速度为45km/h,汽车的速度为60km/h;④汽车出发1小时后与摩托车相遇,此时距B地40千米.其中正确结论的个数是( )

A. 2个 B. 3个 C. 4个 D. 1个
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=10,AC=2
,BC边上的高AD=6,则另一边BC等于_______.【答案】10或6
【解析】试题解析:根据题意画出图形,如图所示,

如图1所示,AB=10,AC=2
,AD=6,在Rt△ABD和Rt△ACD中,
根据勾股定理得:BD=
=8,CD=
=2,此时BC=BD+CD=8+2=10;
如图2所示,AB=10,AC=2
,AD=6,在Rt△ABD和Rt△ACD中,
根据勾股定理得:BD=
=8,CD=
=2,此时BC=BD-CD=8-2=6,
则BC的长为6或10.
【题型】填空题
【结束】
12【题目】在平面直角坐标系中,已知一次函数y=2x+1的图象经过P1(x1,y1)、P2(x2,y2)两点,若x1<x2,则y1 ______ y2.(填“>”“<”或“=”)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,OA是⊙O的半径,BC是⊙O的弦,且BC⊥OA,过BC的延长线上一点D作⊙O的切线DE,切点为E,连接AB,BE,若∠BDE=52°,则∠ABE的度数是( )

A.52°
B.58°
C.60°
D.64°
相关试题