【题目】如图,直线AB,CD相交于点O,OE平分∠AOC,∠AOD比∠AOE大75°,求∠AOD的度数.
![]()
参考答案:
【答案】110°.
【解析】两直线相交,对顶角相等,直线AB,CD相交于点O,则∠AOD与∠AOC互为邻补角,即∠AOD+∠AOC=180°,又因为OE平分∠AOC,所以2∠AOE=∠AOC,所以∠AOE=
(180°∠AOD),再根据∠AOD比∠AOE大75°,可求出∠AOD的度数.
∵AB,CD相交于点O,
∴∠AOD+∠AOC=180°,
又∵OE平分∠AOC,
∴2∠AOE=∠AOC,
∴∠AOE=
(180°∠AOD),
∵∠AOD∠AOE=75°,
∴∠AOD
(180°∠AOD)=75°,
∴
∠AOD=165°,
∴∠AOD=110°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD外取一点E,连接AE、BE、DE.过点A作AE的垂线交DE于点P.若AE=AP=1,PB=
.下列结论:①△APD≌△AEB;②点B到直线AE的距离为
;③EB⊥ED;④S△APD+S△APB=1+
;⑤S正方形ABCD=4+
.其中正确结论的序号是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在四边形ABCD中,∠DAB被对角线AC平分,且AC2=ABAD.我们称该四边形为“可分四边形”,∠DAB称为“可分角”.

(1)如图2,在四边形ABCD中,∠DAB=60°,AC平分∠DAB,且∠BCD=150°,求证:四边形ABCD为“可分四边形”;
(2)如图3,四边形ABCD为“可分四边形”,∠DAB为“可分角”,如果∠DCB=∠DAB,则求∠DAB的度数;
(3)现有四边形ABCD为“可分四边形”,∠DAB为“可分角”,且AC=4,则△DAB的最大面积等于 . -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知
于点C,AC=4,BC=
,将线段AC绕点A按逆时针方向旋转
,得到线段AD,连接DC,DB,则线段DB的长为__________。
-
科目: 来源: 题型:
查看答案和解析>>【题目】某科技有限公司准备购进A和B两种机器人来搬运化工材料,已知购进A种机器人2个和B种机器人3个共需16万元,购进A种机器人3个和B种机器人2个共需14万元,请解答下列问题:
(1)求A、B两种机器人每个的进价;
(2)已知该公司购买B种机器人的个数比购买A种机器人的个数的2倍多4个,如果需要购买A、B两种机器人的总个数不少于28个,且该公司购买的A、B两种机器人的总费用不超过106万元,那么该公司有哪几种购买方案?
-
科目: 来源: 题型:
查看答案和解析>>【题目】2017年4月20日,成都举行了“建城市森林,享低碳生活”的垃圾分类推进工作启动仪式,在成都设置有专门的垃圾存放点,做到日产日清。在平面直角坐标系中xOy中,A,B,C三个垃圾存放点的位置如图1所示,点A在原点,
,
.某同学利用周末时间调查了这三个存放点的垃圾量,并绘制了如下尚不完整的扇形统计图(如图2)。(1)若C处的垃圾存放量为320千克,求A处的垃圾存放量。
(2)现需要A,C两处的垃圾分别沿道路AB,CB都运到B处,若点B的横坐标为50,平面直角坐标系中一个单位长度所表示的实际距离是1米,每运送1千克垃圾1米的费用为0.005元,求本次运送垃圾的总费用。(结果保留整数,参考数据:
)
相关试题