【题目】如图,点O是直线AB上一点,∠AOD=120,∠AOC=90,OE平分∠BOD,则图中互为补角的角有__________对。
![]()
参考答案:
【答案】6
【解析】
根据图形,可得3对互补的角,再结合已知条件,利用角的和差以及角平分线的定义求出∠COD、∠DOE、∠BOE、∠COE的度数即可求得答案.
∵O是直线AB上一点,
∴∠AOC+∠BOC=180°,∠AOD+∠BOD=180°,∠AOE+∠BOE=180°,
∵∠AOD=120°,∠AOC=90°,
∴∠BOD=180°-∠AOD=60°,∠COD=∠AOD-∠AOC=120°-90°=30°,
∵OE平分∠BOD,
∴∠BOE=∠DOE=30°,
∴∠COE=∠COD+∠DOE=60°,
∴∠AOD+∠COE=180°,
∠AOE+∠DOE=180°,∠AOE+∠COD=180°,
∴图中互补的角有6对,
故答案为:6.
-
科目: 来源: 题型:
查看答案和解析>>【题目】近期,大陆相关部门对原产台湾地区的15种水果实施进口零关税措施,扩大了台湾水果在大陆的销售,某经销商销售了台湾水果凤梨,根据以往销售经验,每天的售价与销售量之间有如下关系:
每千克售价(元)
38
37
36
35
…
20
每天销量(千克)
50
52
54
56
…
86
设当单价从38元/千克下调了x元时,销售量为y千克.
(1)写出y与x之间的关系式;
(2)如果凤梨的进价是20元/千克,某天的销售价定为30元/千克,这天的销售利润是多少?
(3)以前在两岸未直接通航时,运输要绕行,需耗时一周(七天),凤梨最长的保存期为一个月(30天),若每天售价不低于30元/千克,一次进货最多只能是多少千克?
-
科目: 来源: 题型:
查看答案和解析>>【题目】乘法公式的探究及应用.
(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);
(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);
(3)比较图1、图2两图的阴影部分面积,可以得到乘法公式 (用式子表达);
(4)运用你所得到的公式,计算下列各题:
①(2m+n-p)(2m-n+p);②10.3×9.7.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,点A、B均在函数
(k>0,x>0)的图象上,⊙A与x轴相切,⊙B与y轴相切.若点B的坐标为(1,6),⊙A的半径是⊙B的半径的2倍,则点A的坐标为( )
A.(2,2)
B.(2,3)
C.(3, 2)
D.(4,
) -
科目: 来源: 题型:
查看答案和解析>>【题目】在我们认识的多边形中,有很多轴对称图形.有些多边形,边数不同对称轴的条数也不同;有些多边形,边数相同但却有不同数目的对称轴.回答下列问题:
(1)非等边的等腰三角形有________条对称轴,非正方形的长方形有________条对称轴,等边三角形有___________条对称轴;
(2)观察下列一组凸多边形(实线画出),它们的共同点是只有1条对称轴,其中图1-2和图1-3都可以看作由图1-1修改得到的,仿照类似的修改方式,请你在图1-4和图1-5中,分别修改图1-2和图1-3,得到一个只有1条对称轴的凸五边形,并用实线画出所得的凸五边形;
(3)小明希望构造出一个恰好有2条对称轴的凸六边形,于是他选择修改长方形,图2中是他没有完成的图形,请用实线帮他补完整个图形;


(4)请你画一个恰好有3条对称轴的凸六边形,并用虚线标出对称轴.
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算题:
(1)
;(2) (-2x2y+6x3y4-8xy)÷(-2xy);
(3)先化简,再求值:
,其中
. -
科目: 来源: 题型:
查看答案和解析>>【题目】在△DEF中,DE=DF,点B在EF边上,且∠EBD=60°,C是射线BD上的一个动点(不与点B重合,且BC≠BE),在射线BE上截取BA=BC,连接AC.

(1)当点C在线段BD上时,
①若点C与点D重合,请根据题意补全图1,并直接写出线段AE与BF的数量关系为________;
②如图2,若点C不与点D重合,请证明AE=BF+CD;
(2)当点C在线段BD的延长线上时,用等式表示线段AE,BF,CD之间的数量关系,不用证明.
相关试题