【题目】如图,在菱形ABCD中,AC与BD相交于点O,AB=4,BD=4
,E为AB的中点,点P为线段AC上的动点,则EP+BP的最小值为( )
![]()
A. 4B. 2
C. 2
D. 8
参考答案:
【答案】C
【解析】
连结DE交AC于点P,连结BP,根据菱形的性质推出AO是BD的垂直平分线,推出PE+PB=PE+PD=DE且值最小,根据勾股定理求出DE的长即可.
如图,设AC,BD相交于O,
![]()
∵四边形ABCD是菱形,
∴AC⊥BD,AO=
AC,BO=
BD=2
,
∵AB=4,
∴AO=2,
连结DE交AC于点P,连结BP,作EM⊥BD于点M,
∵四边形ABCD是菱形,
∴AC⊥BD,且DO=BO,即AO是BD的垂直平分线,
∴PD=PB,
∴PE+PB=PE+PD=DE且值最小,
∵E是AB的中点,EM⊥BD,
∴EM=
AO=1,BM=
BO=
,
∴DM=DO+OM=
BO=3
,
∴DE=
,
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(10分)问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.

[探究发现]
小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.根据“边角边”,可证△CEH≌ ,得EH=ED.
在Rt△HBE中,由 定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是 .
[实践运用]
(1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;
(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2
,运用小聪同学探究的结论,求正方形的边长及MN的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE⊥AC,连结 DF 交射线 AC 于点 G

(1)当 DF⊥AB 时,求 t 的值;
(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。
(3)聪明的斯扬同学通过测量发现,当点 D 在线段 AB 上时,EG 的长始终等于 AC 的一半,他想当点D 运动到图 2 的情况时,EG 的长是否发生变化?若改变,说明理由;若不变,求出 EG 的长。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A2017的坐标是( )

A. (0,21008) B. (21008,21008) C. (21009,0) D. (21009,-21009)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D为边AB上一点,CD绕点D顺时针旋转90°至DE,CE交AB于点G.已知AD=8,BG=6,点F是AE的中点,连接DF,求线段DF的长___.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的口袋中有3个分别标有数字-1、1、2的小球,它们除标的数字不同外无其他区别.
(1)随机地从口袋中取出一小球,求取出的小球上标的数字为负数的概率;
(2)随机地从口袋中取出一小球,放回后再取出第二个小球,求两次取出的数字的和等于0的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】实验初中组织了“英语手抄报”征集活动,现从中随机抽取部分作品,按A、B、C、D四个等级进行评价,并根据统计结果绘制了如下两幅不完整的统计图.

(1)抽取了_____份作品;
(2)此次抽取的作品中等级为B的作品有______份,并补全条形统计图;
(3)若该校共征集到600份作品,请估计等级为A的作品约有多少份?
相关试题