【题目】如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D为边AB上一点,CD绕点D顺时针旋转90°至DE,CE交AB于点G.已知AD=8,BG=6,点F是AE的中点,连接DF,求线段DF的长___.
![]()
参考答案:
【答案】
【解析】如图,将△ACD绕点C逆时针旋转90°得到△CBP,作CM⊥AB于M,EN⊥AB于N,在NA上截取一点H,使得NH=NE,连接HE,PG.
![]()
∵AC=BC,∠ACB=90°,
∴∠CAB=∠CBA=45°,
∵DC=DE,∠CDE=90°,
∴∠DCE=45°,
∴∠ACD+∠BCG=45°,
∵∠ACD=∠BCP,
∴∠GCP=∠GCD=45°,
在△GCD和△GCP中,
,
∴△GCD≌△GCP,
∴DG=PG,
∵∠PBG=∠PBC+∠CBG=90°,BG=6,PB=AD=8,
,
∴AB=AD+DG+BG=24,CM=AM=MB=12,DM=AM﹣AD=4,
∵∠DCM+∠CDM=90°,∠CDM+∠EDN=90°,
∴∠DCM=∠EDN,
在△CDM和△DEN中,
,
∴△CDM≌△DEN,
∴DM=NE=HN=4,CM=DN=AM,
∴AD=NM,DH=AD,
∵AF=FE,
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在边长为 4 的等边△ABC 中,点 D 从点A 开始在射线 AB 上运动,速度为 1 个单位/秒,点F 同时从 C 出发,以相同的速度沿射线 BC 方向运动,过点D 作 DE⊥AC,连结 DF 交射线 AC 于点 G

(1)当 DF⊥AB 时,求 t 的值;
(2)当点 D 在线段 AB 上运动时,是否始终有 DG=GF?若成立,请说明理由。
(3)聪明的斯扬同学通过测量发现,当点 D 在线段 AB 上时,EG 的长始终等于 AC 的一半,他想当点D 运动到图 2 的情况时,EG 的长是否发生变化?若改变,说明理由;若不变,求出 EG 的长。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O(0,0),A(0,1)是正方形OAA1B的两个顶点,以OA1对角线为边作正方形OA1A2B1,再以正方形的对角线OA2作正方形OA1A2B1,…,依此规律,则点A2017的坐标是( )

A. (0,21008) B. (21008,21008) C. (21009,0) D. (21009,-21009)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在菱形ABCD中,AC与BD相交于点O,AB=4,BD=4
,E为AB的中点,点P为线段AC上的动点,则EP+BP的最小值为( )
A. 4B. 2
C. 2
D. 8 -
科目: 来源: 题型:
查看答案和解析>>【题目】在一个不透明的口袋中有3个分别标有数字-1、1、2的小球,它们除标的数字不同外无其他区别.
(1)随机地从口袋中取出一小球,求取出的小球上标的数字为负数的概率;
(2)随机地从口袋中取出一小球,放回后再取出第二个小球,求两次取出的数字的和等于0的概率.
-
科目: 来源: 题型:
查看答案和解析>>【题目】实验初中组织了“英语手抄报”征集活动,现从中随机抽取部分作品,按A、B、C、D四个等级进行评价,并根据统计结果绘制了如下两幅不完整的统计图.

(1)抽取了_____份作品;
(2)此次抽取的作品中等级为B的作品有______份,并补全条形统计图;
(3)若该校共征集到600份作品,请估计等级为A的作品约有多少份?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°.
(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)
①作AC的垂直平分线,交AB于点O,交AC于点D;
②以O为圆心,OA为半径作圆,交OD的延长线于点E.
(2)在(1)所作的图形中,解答下列问题.
①点B与⊙O的位置关系是__;(直接写出答案)
②若DE=2,AC=8,求⊙O的半径.

相关试题