【题目】已知:如图,在△ABC中,AB=AC,以BC为直径的半圆O与边AB相交于点D,切线DE⊥AC,垂足为点E.
求证:(1)△ABC是等边三角形;(2)AE=
CE.
![]()
参考答案:
【答案】(1)证明见解析;(2)证明见解析.
【解析】分析:(1)连接OD,根据切线的性质得到OD⊥DE,从而得到平行线,得到∠ODB=∠A,∠ODB=∠B,则∠A=∠B,得到AC=BC,从而证明该三角形是等边三角形;
(2)再根据在圆内直径所对的角是直角这一性质,推出30°的直角三角形,根据30°所对的直角边是斜边的一半即可证明.
详解:证明:(1)如图所示,连接OD.
∵DE是☉O的切线,∴OD⊥DE.
∵DE⊥AC,∴OD∥AC,∴∠BDO=∠A.
又由OB=OD得∠OBD=∠ODB,
∴∠OBD=∠A.∴BC=AC.
又∵AB=AC,∴△ABC是等边三角形.
![]()
(2)连接CD,则CD⊥AB,
由(1)知AC=BC,
∴D是AB的中点.∴AD=
AB.
在Rt△ADE中,∵∠A=60°,∴AE=ADcos A=
AD.
∴AE=
AD=
AB=
AC,
∴EC=3AE,∴AE=
CE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】综合与探究
问题情境:
在综合实践课上,李老师让同学们根据如下问题情境,写出两个数学结论:如图(1),正方形ABCD的对角线交于点O,点O又是正方形OEFG的一个顶点(正方形OEFG的边长足够长),将正方形OEFG绕点O做旋转实验,OE与BC交于点M,OG与DC交于点N.

“兴趣小组”写出的两个数学结论是:
①S△OMC+S△ONC=
S正方形ABCD;②BM2+CM2=2OM2.
问题解决:
(1)请你证明“兴趣小组”所写的两个结论的正确性.
类比探究:
(2)解决完“兴趣小组”的两个问题后,老师让同学们继续探究,再提出新的问题;“智慧小组“提出的问题是:如图(2),将正方形OEFG在图(1)的基础上旋转一定的角度,当OE与CB的延长线交于点M,OG与DC的延长线交于点N,则“兴趣小组”所写的两个结论是否仍然成立?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某数学兴趣小组在活动课上测量学校旗杆的高度.已知小亮站着测量,眼睛与地面的距离(AB)是1.7米,看旗杆顶部E的仰角为30°;小敏蹲着测量,眼睛与地面的距离(CD)是0.7米,看旗杆顶部E的仰角为45°.两人相距5米且位于旗杆同侧(点B、D、F在同一直线上).
(1)求小敏到旗杆的距离DF.(结果保留根号)
(2)求旗杆EF的高度.(结果保留整数,参考数据:
≈1.4,
≈1.7)
-
科目: 来源: 题型:
查看答案和解析>>【题目】将图1中的正方形剪开得到图2,则图2中共有4个正方形;将图2中的一个正方形剪开得到图3,图3中共有7个正方形;将图3中4个较小的正方中的一个剪开得到图4,则图4中共有10个正方形,照这个规律剪下去……

(1)根据图中的规律补全下表:
图形标号
1
2
3
4
5
6

n
正方形个数
1
4
7
10

(2)求第几幅图形中有2020个正方形?
-
科目: 来源: 题型:
查看答案和解析>>【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗. 我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整). 请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图
,试判断
、
、
之间的关系.并说明理由.(2)如图
,
,
.试判断
和
的位置关系,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】根据给出的数轴及已知条件,解答下面的问题:

(1)已知点A,B,C表示的数分别为1,
,-3.观察数轴,与点A的距离为3的点表示的数是 ,A,B两点之间的距离为 。(2)数轴上,点B关于点A的对称点表示的数是 ;
(3)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是 ;若此数轴上M,N两点之间的距离为2019(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则点M表示的数是 ,点N表示的数是 。
(4)若数轴上P,Q两点间的距离为a(P在Q的左侧),表示数b的点到P,Q的两点的距离相等,将数轴折叠,当P点与Q点重合时,点P表示的数是 ,点Q表示的数是 (用含a,b的式子表示这两个数)。
相关试题