【题目】如图,∠AOB=90°,OA=90cm,OB=30cm,一机器人在点B处看见一个小球从点A出发沿着AO方向匀速滚向点O,机器人立即从点B出发,沿直线匀速前进拦截小球,恰好在点C处截住了小球.如果小球滚动的速度与机器人行走的速度相等,那么机器人行走的路程BC是多少?![]()
参考答案:
【答案】解:∵小球滚动的速度与机器人行走的速度相等 ∴BC=AC
设BC=AC=xcm ∴OC=(90-x)cm 在Rt△BOC中, ![]()
∴
解得:x=50
答:机器人行走的路程BC为50cm
【解析】根据小球滚动的速度与机器人行走的速度相等 知BC=AC,设BC=AC=xcm ∴OC=(90-x)cm 在Rt△BOC中利用勾股定理列出方程求解即可。
【考点精析】掌握勾股定理的概念是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,
、
均在边长为1的正方形网格格点上.
(1)在网格的格点中,找一点C,使△ABC是直角三角形,且三边长均为无理数(只画出一个,并涂上阴影);
(2)若点P在图中所给网格中的格点上,△APB是等腰三角形,满足条件的点P共有个;
(3)若将线段AB绕点A顺时针旋转90°,写出旋转后点B的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一块四边形草地ABCD,其中∠B=90°,AB=4m,BC=3m , AD=12m, CD =13cm,求这块草地的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知E、F分别为平行四边形ABCD的对边AD、BC上的点,且DE=BF,EM⊥AC于M,FN⊥AC于N,EF交AC于点O,

求证:
(1)EM=FN;
(2)EF与MN互相平分. -
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形中有一个内角为40°,则其底角的度数是_____________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为解决“最后一公里一的交通接驳同题,苏州市投放了大量公租自行车供 市民使用到2014年底,全市已有公租自行车25 000辆,租赁点600个,预计到2016年底,全市将有公租自行车50 000辆,并且平均每个租赁点的公租自行车数量是2014年底平均每个租赁点的公租自行车数量的1.2倍,预计到2016年底,全市将有租赁点多少个?
-
科目: 来源: 题型:
查看答案和解析>>【题目】近年来,我国多个城市遭遇雾霾天气,空气中可吸入颗粒(又称PM2.5)浓度升高,为应对空气污染,小强家购买了空气净化器,该装置可随时显示室内PM2.5的浓度,并在PM2.5浓度超过正常值25(mg/m3)时吸收PM2.5以净化空气.随着空气变化的图象(如图),请根据图象,解答下列问题:

(1)写出点M的实际意义;
(2)求第1小时内,y与t的一次函数表达式;
(3)已知第5﹣6小时是小强妈妈做晚餐的时间,厨房内油烟导致PM2.5浓度升高.若该净化器吸收PM2.5的速度始终不变,则第6小时之后,预计经过多长时间室内PM2.5浓度可恢复正常?
相关试题