【题目】如图,点A的坐标为(4,0),点B从原点出发,沿y轴负方向以每秒1个单位长度的速度运动,分别以OB,AB为直角边在第三、第四象限作等腰Rt△OBE,等腰Rt△ABF,连结EF交y轴于P点,当点B在y轴上运动时,经过t秒时,点E的坐标是_____(用含t的代数式表示),PB的长是_____.
![]()
参考答案:
【答案】(1)(t,﹣4﹣t);(2)2.
【解析】
如图,作EG⊥y轴于G,
∵∠AOB=∠ABE=∠BGE=90°,
∴∠GBE+∠ABO=90°,∠BAO+∠ABO=90°,
∴∠GBE=∠BAO,
在△ABO和△BEG中,
∵
,
∴△ABO≌△BEG(AAS),
∴EG=OB=t,BG=AO=4,
∴OG=OB+BG=4+t,
则E点的坐标是(t,﹣4﹣t).
∵△OBF为等腰直角三角形,
∴BF=OB,
∴BF=GE,
在△FBP和△EGP中,
∵
,
∴△FBP≌△EGP(AAS),
∵BG=AO=4,
∴BP=GP=
BG=
×4=2.
故答案为(t,﹣4﹣t);2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①所示,直线L:y=kx+5k与x轴负半轴、y轴正半轴分别交于A、B两点.
(1)当OA=OB时,试确定直线L解析式;
(2)在(1)的条件下,如图②所示,设Q为AB延长线上一点,连接OQ,过A、B两点分别作AM⊥OQ于M,BN⊥OQ于N,若BN=3,求MN的长;
(3)当K取不同的值时,点B在y轴正半轴上运动,分别以OB、AB为边在第一、第二象限作等腰直角△OBF和等腰直角△ABE,连EF交y轴于P点,问当点B在y轴上运动时,试猜想△ABP的面积是否改变,若不改变,请求出其值;若改变,请说明理由.
(4)当K取不同的值时,点B在y轴正半轴上运动,以AB为边在第二象限作等腰直角△ABE,则动点E在直线______上运动.(直接写出直线的表达式)

-
科目: 来源: 题型:
查看答案和解析>>【题目】某县城要铺一条自来水管道,决定由甲、乙两个工程队来完成这一工程,已知甲工程队比乙工程队每天多铺10m,且甲工程队铺设350m所用的天数与乙工程队铺设250m所用的天数相同
甲、乙两个工程队每天各能铺设多少米管道? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,O是正△ABC内一点,OA=6,OB=8,OC=10,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为8;③S四边形AOBO′=24+12
;④S△AOC+S△AOB=24+9
;⑤S△ABC=36+25
; 其中正确的结论有( )
A.1个
B.2个
C.3个
D.4个 -
科目: 来源: 题型:
查看答案和解析>>【题目】在一条东西走向河的一侧有一村庄C,河边原有两个取水点A,B,其中AB=AC,由于某种原因,由C到A的路现在已经不通,某村为方便村民取水决定在河边新建一个取水点H(A、H、B在一条直线上),并新修一条路CH,测得CB=3千米,CH=2.4千米,HB=1.8千米.
(1)问CH是否为从村庄C到河边的最近路?(即问:CH与AB是否垂直?)请通过计算加以说明;
(2)求原来的路线AC的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】小明和小慧两位同学在数学活动课中,把长为30cm,宽为10cm的长方形白纸条粘合起来,小明按如图甲所示的方法粘合起来得到长方形ABCD,粘合部分的长度为6cm,小慧按如图乙所示的方法粘合起来得到长方形 A1B1C1D1 ,粘合部分的长度为4cm。若长为30cm,宽为10cm的长方形白纸共有100张,则小明应分配到( )张长方形白纸条,才能使小明和小慧按各自粘合起来的长方形面积相等(要求100张长方形白纸条全部用完)


A.41
B.42
C.43
D.44 -
科目: 来源: 题型:
查看答案和解析>>【题目】某校八年级学生开展跳绳比赛活动,每班派5名学生参加,按团体总分多少排列名次,统计发现成绩最好的甲班和乙班总分相等,下表是甲班和乙班学生的比赛数据
单位:个
选手
1号
2号
3号
4号
5号
总计
甲班
100
98
105
94
103
500
乙班
99
100
95
109
97
500
此时有学生建议,可以通过考察数据中的其他信息作为参考,请解答下列问题:
求两班比赛数据中的中位数,以及方差;
请根据以上数据,说明应该定哪一个班为冠军?为什么?
相关试题