【题目】如图,将矩形ABCD沿直线EF折叠,使点C与点A重合,折痕交AD于点E,交BC于点F,连接AF、CE, ![]()
(1)求证:四边形AFCE为菱形;
(2)设AE=a,ED=b,DC=c.请写出一个a、b、c三者之间的数量关系式.
参考答案:
【答案】
(1)证明:∵四边形ABCD是矩形,
∴AD∥BC,
∴∠AEF=∠EFC,
由折叠的性质,可得:∠AEF=∠CEF,AE=CE,AF=CF,
∴∠EFC=∠CEF,
∴CF=CE,
∴AF=CF=CE=AE,
∴四边形AFCE为菱形
(2)a、b、c三者之间的数量关系式为:a2=b2+c2.
理由:由折叠的性质,得:CE=AE,
∵四边形ABCD是矩形,
∴∠D=90°,
∵AE=a,ED=b,DC=c,
∴CE=AE=a,
在Rt△DCE中,CE2=CD2+DE2,
∴a、b、c三者之间的数量关系式为:a2=b2+c2
【解析】(1)由矩形ABCD与折叠的性质,易证得△CEF是等腰三角形,即CE=CF,即可证得AF=CF=CE=AE,即可得四边形AFCE为菱形;(2)由折叠的性质,可得CE=AE=a,在Rt△DCE中,利用勾股定理即可求得:a、b、c三者之间的数量关系式为:a2=b2+c2 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△ABC中,∠C=90°,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点O,连接OC,已知AC=5,OC=6
,则另一直角边BC的长为 . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:|﹣4|+
﹣
﹣
cos45°. -
科目: 来源: 题型:
查看答案和解析>>【题目】为了了解2012年全国中学生创新能力大赛中竞赛项目“知识产权”笔试情况,随机抽查了部分参赛同学的成绩,整理并制作图表如下:
分数段
频数
频率
60≤x<70
30
0.1
70≤x<80
90
n
80≤x<90
m
0.4
90≤x≤100
60
0.2
请根据以上图表中提供的信息,解答下列问题:

(1)本次调查的样本容量为;
(2)在表中:m= , n=;
(3)补全频数分布直方图;
(4)参加比赛的小聪说,他的比赛成绩是所有抽查同学成绩的中位数,据此推断他的成绩落在分数段内;
(5)如果比赛成绩80分以上(含80分)为优秀,那么你估计该竞赛项目的优秀率大约是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】“节能环保,低碳生活”是我们倡导的一种生活方式,某家电商场计划用11.8万元购进节能型电视机、洗衣机和空调共40台,三种家电的进价和售价如表所示:
价格
种类进价
(元/台)售价
(元/台)电视机
5000
5500
洗衣机
2000
2160
空 调
2400
2700
(1)在不超出现有资金的前提下,若购进电视机的数量和洗衣机的数量相同,空调的数量不超过电视机的数量的3倍.请问商场有哪几种进货方案?
(2)在“2012年消费促进月”促销活动期间,商家针对这三种节能型产品推出“现金每购1000元送50元家电消费券一张、多买多送”的活动.在(1)的条件下,若三种电器在活动期间全部售出,商家预估最多送出多少张? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC的三个顶点坐标分别为A(﹣4,0)、B(1,0)、C(﹣2,6).

(1)求经过A、B、C三点的抛物线解析式;
(2)设直线BC交y轴于点E,连接AE,求证:AE=CE;
(3)设抛物线与y轴交于点D,连接AD交BC于点F,试问以A、B、F为顶点的三角形与△ABC相似吗?
(4)若点P为直线AE上一动点,当CP+DP取最小值时,求P点的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线l:y=﹣2x+b(b≥0)的位置随b的不同取值而变化.

(1)已知⊙M的圆心坐标为(4,2),半径为2.
当b=时,直线l:y=﹣2x+b(b≥0)经过圆心M;
当b=时,直线l:y=﹣2x+b(b≥0)与⊙M相切;
(2)若把⊙M换成矩形ABCD,其三个顶点坐标分别为:A(2,0)、B(6,0)、C(6,2).设直线l扫过矩形ABCD的面积为S,当b由小到大变化时,请求出S与b的函数关系式.
相关试题