【题目】如图,Rt△OAB的顶点A(﹣4,8)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为 ![]()
参考答案:
【答案】(2
,4)
【解析】解:∵Rt△OAB的顶点A(﹣4,8)在抛物线y=ax2上,
∴8=16a,解得a=
,
∴抛物线为y=
x2 ,
∵点A(﹣4,8),
∴B(﹣4,0),
∴OB=4,
∵将Rt△OAB绕点O顺时针旋转90°,得到△OCD,
∴D点在y轴上,且OD=OB=4,
∴D(0,4),
∵DC⊥OD,
∴DC∥x轴,
∴P点的纵坐标为4,
代入y=
x2 , 得4=
x2 ,
解得x=±2
,
∴P(2
,4).
故答案为(2
,4).
先根据待定系数法求得抛物线的解析式,然后根据题意求得D(0,4),且DC∥x轴,从而求得P的纵坐标为4,代入求得的解析式即可求得P的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O的半径为2,△ABC是⊙O的内接三角形,连接OB、OC.若∠BAC与∠BOC互补,则弦BC的长为( )

A.4
B.3
C.2
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△OAB的顶点A(﹣4,8)在抛物线y=ax2上,将Rt△OAB绕点O顺时针旋转90°,得到△OCD,边CD与该抛物线交于点P,则点P的坐标为

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知正方形ABCD的边长为6,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=2,则FM的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知正方形ABCD的边长为6,E、F分别是AB、BC边上的点,且∠EDF=45°,将△DAE绕点D逆时针旋转90°,得到△DCM.若AE=2,则FM的长为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)

(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;
(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;
(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.

(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.
相关试题