【题目】如图1,在△ABC中,∠ACB=90°,AC=
BC,点D为BC的中点,AB =DE,BE∥AC.
(1)求证:△ABC≌△DEB;
(2)连结AD、AE、CE,如图2.
①求证:CE是∠ACB的角平分线;
②请判断△ABE是什么特殊形状的三角形,并说明理由.
![]()
参考答案:
【答案】(1)详见解析;(2)①详见解析;②△ABE是等腰三角形,理由详见解析.
【解析】
(1)由AC//BE,∠ACB=90°可得∠DBE=90°,由AC=
BC,D是BC中点可得AC=BD,利用HL即可证明△ABC≌△DEB;(2)①由(1)得BE=BC,由等腰直角三角形的性质可得∠BCE=45°,进而可得∠ACE=45°,即可得答案;②根据SAS可证明△ACE≌△DCE,可得AE=DE,由AB=DE可得AE=AB即可证明△ABE是等腰三角形.
(1)∵∠ACB=90°,BE∥AC
∴∠CBE=90°
∴△ABC和△DEB都是直角三角形
∵AC=
BC,点D为BC的中点
∴AC=BD
又∵AB=DE
∴△ABC≌△DEB(H.L.)
![]()
(2)①由(1)得:△ABC≌△DEB
∴BC=EB
又∵∠CBE=90°
∴∠BCE=45°
∴∠ACE=90°-45°=45°
∴∠BCE=∠ACE
∴CE是∠ACB的角平分线
②△ABE是等腰三角形,理由如下:
在△ACE和△DCE中![]()
∴△ACE≌△DCE(SAS).
∴AE=DE
又∵AB=DE
∴AE=AB
∴△ABE是等腰三角形
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,∠A=∠C=90°,BE,DF分别是∠ABC,∠ADC的平分线.

(1)∠1与∠2有什么关系,为什么?
(2)BE与DF有什么关系?请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】矩形ABCD的两条对称轴为坐标轴,点A的坐标为(2,1).一张透明纸上画有一个点和一条抛物线,平移透明纸,这个点与点A重合,此时抛物线的函数表达式为y=x2 , 再次平移透明纸,使这个点与点C重合,则该抛物线的函数表达式变为( )
A.y=x2+8x+14
B.y=x2-8x+14
C.y=x2+4x+3
D.y=x2-4x+3 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠ABC=90°,点D、E分别在BC、AC上,AD⊥DE,且AD=DE,点F是AE的中点,FD与AB的延长线相交于点M,连接MC.
(1)MF与AC的位置关系是:______.
(2)求证:CF=MF.
(3)猜想:AD与MC的位置关系,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】对于二次函数y=x2﹣2mx﹣3,下列结论错误的是( )
A.它的图象与x轴有两个交点
B.方程x2﹣2mx=3的两根之积为﹣3
C.它的图象的对称轴在y轴的右侧
D.x<m时,y随x的增大而减小 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1所示,边长为a的正方形中有一个边长为b的小正方形,图2是由图1中阴影部分拼成的一个长方形,设图1中阴影部分面积为S1,图2中阴影部分面积为S2.
(1)请直接用含a,b的代数式表示S1=______,S2=_____;
(2)写出利用图形的面积关系所揭示的公式:_______;
(3)利用这个公式说明216﹣1既能被15整除,又能被17整除.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°.
(1)尺规作图:作AB边上的垂直平分线DE,交AC于点D,交AB于点E.(保留作图痕迹,不要求写作法和证明);
(2)在(1)的条件下,连接BD,当BC=5cm,AB=13cm时,求△BCD的周长.

相关试题