【题目】如图,△ABC的边AC与⊙O相交于C、D两点,且经过圆心O,边AB与⊙O相切,切点为B.已知∠A=30°,则∠C的大小是( )![]()
A.30°
B.45°
C.60°
D.40°
参考答案:
【答案】A
【解析】解:连结OB,如图,
![]()
∵AB与⊙O相切,
∴OB⊥AB,
∴∠ABO=90°,
∵∠A=30°,
∴∠AOB=60°,
∵∠AOB=∠C+∠OBC,
而∠C=∠OBC,
∴∠C=
AOB=30°.
所以答案是:A.
【考点精析】利用三角形的外角和等腰三角形的性质对题目进行判断即可得到答案,需要熟知三角形一边与另一边的延长线组成的角,叫三角形的外角;三角形的一个外角等于和它不相邻的两个内角的和;三角形的一个外角大于任何一个和它不相邻的内角;等腰三角形的两个底角相等(简称:等边对等角).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,点E、F分别为DC、BC边上的点,且∠EAF=45°,若将△ADE绕点A顺时针方向旋转90°得到△ABG.回答下列问题:
(1)∠GAF等于多少度?为什么?
(2)EF与FG相等吗?为什么?
(3)△AEF与△AGF有何种位置关系?

-
科目: 来源: 题型:
查看答案和解析>>【题目】母亲节前夕,某淘宝店主从厂家购进A、B两种礼盒,已知A、B两种礼盒的单价比为2:3,单价和为200元.
(1)求A、B两种礼盒的单价分别是多少元?
(2)该店主购进这两种礼盒恰好用去9600元,且购进A种礼盒最多36个,B种礼盒的数量不超过A种礼盒数量的2倍,共有几种进货方案?
(3)根据市场行情,销售一个A种礼盒可获利10元,销售一个B种礼盒可获利18元.为奉献爱心,该店主决定每售出一个B种礼盒,为爱心公益基金捐款m元,每个A种礼盒的利润不变,在(2)的条件下,要使礼盒全部售出后所有方案获利相同,m值是多少?此时店主获利多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义一种新运算“a☆b”的含义为:当a≥b时,a☆b=a+b;当a<b时,a☆b=a-b.例如:3☆(-4)=3+(-4)=-1,(-6)☆
=-6-
=-6
.(1)填空:(-4)☆3=______;
(2)如果(3x-4)☆(2x+8)=(3x-4)-(2x+8),求x的取值范围;
(3)如果(3x-7)☆(3-2x)=2,求x的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)如图1,在△ABC中,∠BAC=90°,AB=AC,直线m经过点A,BD⊥直线m,CE⊥直线m,垂足分别为D,E.求证:DE=BD+CE;

(2)如图2,将(1)中的条件改为:在△ABC中,AB=AC,D,A,E三点都在直线m上,并且有∠BDA=∠AEC=∠BAC=a,其中a为任意锐角或钝角,请问结论DE=BD+CE是否成立?若成立,请你给出证明;若不成立,请说明理由;
(3)如图3,在(2)的条件下,若a=120°,且△ACF为等边三角形,试判断△DEF的形状,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知非负数a、b、c满足
,代数式3a+4b+5c的最大值是x,最小值是y,则x+y的值是___________.
相关试题