【题目】如图,已知ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD=24厘米,△OAB的周长是18厘米,则EF的长是( )厘米.
![]()
A.6 B.9 C.12 D.3
参考答案:
【答案】D
【解析】
试题分析:根据平行四边形的性质可知OA=
AC,OB=
BD,结合AC+BD=24厘米,△OAB的周长是18厘米,求出AB的长,利用三角形中位线定理求出EF的长.
解:∵ABCD的对角线AC,BD相交于点O,
∴OA=OC,OB=OD,
∵AC+BD=24厘米,
∴OB+0A=12厘米,
∵△OAB的周长是18厘米,
∴AB=18﹣12=6厘米,
∵点E,F分别是线段AO,BO的中点,
∴EF是△OAB的中位线,
∴EF=
AB=3厘米,
故选:D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若点A(a+1,b﹣2)在第二象限,则点B(﹣a,b+1)在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A. 各边都相等的多边形叫正多边形 B. 圆上任意两点间的距离叫弧
C. 三角形是多边形 D. 八边形有八个顶点,八个内角,八条对角线
-
科目: 来源: 题型:
查看答案和解析>>【题目】某班数学兴趣小组进行了如下探究:(1)如图①,若四边形ABCD是矩形,对角线AC、BD交点为P,过点P作PQ⊥BC于点Q,连结DQ交AC于点P1,过点P1作P1Q1⊥BC于点Q1,已知AB=CD=a,则PQ= ,P1Q1= .(用含a的代数式表示)

(2)如图②,在直角梯形ABCD中,AB∥CD,∠ABC=90°,AC、BD交于点P,过点P作PQ⊥BC于点Q.已知AB=a,CD=b,请用含a、b的代数式表示线段PQ的长,写出你的解题过程.
(3)如图③,在直角坐标系xOy中,梯形ABCD的腰BC在x轴正半轴上(点B与原点O重合),AB∥CD,∠ABC=60°,AC、BD交于点P,过点P作PQ∥CD交BC于点Q,连结AQ交BD于点P1,过点P1作P1Q1∥CD交BC于点Q1.连结AQ1交BD于点P2,过点P2作P2Q2∥CD交BC于点Q2,…,已知AB=a,CD=b,则点P1的纵坐标为 点Pn的纵坐标为 (直接用含a、b、n的代数式表示)
-
科目: 来源: 题型:
查看答案和解析>>【题目】扬州市中小学全面开展“体艺2+1”活动,某校根据学校实际,决定开设A:篮球,B:乒乓球,C:声乐,D:健美操等四中活动项目,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图.请回答下列问题:

(1)这次被调查的学生共有 人.
(2)请你将统计图1补充完整.
(3)统计图2中D项目对应的扇形的圆心角是 度.
(4)已知该校学生2400人,请根据调查结果估计该校最喜欢乒乓球的学生人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若3a﹣2b=2,则代数式1﹣6a+4b=______;
-
科目: 来源: 题型:
查看答案和解析>>【题目】对于实数a,b,我们定义符号max{a,b}的意义为:当a≥b时,max{a,b}=a;当a<b时,max{a,b]=b;如:max{4,﹣2}=4,max{3,3}=3,若关于x的函数为y=max{x+3,﹣x+1},则该函数的最小值是( )
A.0 B.2 C.3 D.4
相关试题