【题目】如图,点A、B在反比例函数y=
的图象上,过点A、B作x轴的垂线,垂足分别是M、N,射线AB交x轴于点C,若OM=MN=NC,四边形AMNB的面积是3,则k的值为( )
![]()
A.2 B.4 C.﹣2 D.﹣4
参考答案:
【答案】D
【解析】
试题分析:根据三角形面积公式得到S△AOM=
S△AOC,S△ACM=4S△BCN,再根据反比例函数的比例系数k的几何意义得到S△AOM=
|k|,然后利用k<0去绝对值求解.
解:∵点A、B在反比例函数y的图象上,
∴S△AOM=
|k|,
∵OM=MN=NC,
∴AM=2BN,
∴S△AOM=
S△AOC,S△ACM=4S△BCN,S△ACM=2S△AOM,
∵四边形AMNB的面积是3,
∴S△BCN=1,
∴S△AOM=2,
∴|k|=4,
∵反比例函数y=
的图象在第二四象限,
∴k=﹣4,
故选D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图ΔABC中,∠B =∠C,BD=CF,BE=CD,∠EDF=α,则下列结论正确的是( )

A. 2α+∠A=90° B. 2α+∠A=180°
C. α+∠A=90° D. α+∠A=180°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在平面直角坐标系中,半径均为1个单位长度的半圆O1、O2、O3,…组成一条平滑的曲线,点P从原点O出发,沿这条曲线向右运动,速度为每秒
个单位长度,则第2015秒时,点P的坐标是( )
A. (2014,0) B. (2015,﹣1) C. (2015,1) D. (2016,0)
-
科目: 来源: 题型:
查看答案和解析>>【题目】定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.
(1)已知:如图1,四边形
是“等对角四边形”,
,
,
.求
,
的度数.(2)在探究“等对角四边形”性质时:
① 小红画了一个“等对角四边形”
(如图2),其中
,
,此时她发现
成立.请你证明此结论.② 由此小红猜想:“对于任意‘等对角四边形’,当一组邻边相等时,另一组邻边也相等”.你认为她的猜想正确吗?若正确,请证明;若不正确,请举出反例.
(3)已知:在“等对角四边形”
中,
,
,AB=AD=4,.求∠D和对角线
的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】先阅读第(1)题的解答过程,然后再解第(2)题.
(1)已知多项式2x3﹣x2+m有一个因式是2x+1,求m的值.
解法一:设2x3﹣x2+m=(2x+1)(x2+ax+b),则:2x3﹣x2+m=2x3+(2a+1)x2+(a+2b)x+b
比较系数得:
,解得:
,∴
.解法二:设2x3﹣x2+m=A(2x+1)(A为整式)
由于上式为恒等式,为方便计算了取
,
,故
.(2)已知x4+mx3+nx﹣16有因式(x﹣1)和(x﹣2),求m、n的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察下列方程的特征及其解的特点.
①x+
=-3的解为x1=-1,x2=-2;②x+
=-5的解为x1=-2,x2=-3;③x+
=-7的解为x1=-3,x2=-4.解答下列问题:
(1)请你写出一个符合上述特征的方程为____________,其解为x1=-4,x2=-5;
(2)根据这类方程特征,写出第n个方程为________________,其解为x1=-n,x2=-n-1;
(3)请利用(2)的结论,求关于x的方程x+
=-2(n+2)(其中n为正整数)的解. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,下列条件能保证△ABC≌△ADC的是:①AB=AD,BC=DC;②∠1=∠3,∠4=∠2;③∠1=∠2,∠4=∠3;④∠1=∠2,AB=AD;⑤∠1=∠2,BC=DC.( )

A. ①②③④⑤ B. ①②③④ C. ①③④ D. ①③④⑤
相关试题