【题目】AD,AE分别是等边三角形ABC的高和中线,则AD 与AE 的大小关系为____.
参考答案:
【答案】相等
【解析】
根据等边三角形三线合一的性质,可以求得等边三角形每个内角的角平分线和其对应边的中线、高线重合,所以AD 与AE相等
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两车在连通A、B、C三地的公路上行驶,甲车从A地出发匀速向C地行驶,同时乙车从C地出发匀速向b地行驶,到达B地并在B地停留1小时后,按原路原速返回到C地.在两车行驶的过程中,甲、乙两车距B地的路程y(千米)与行驶时间x(小时)之间的函数图象如图所示,请结合图象回答下列问题:
(1)求甲、乙两车的速度,并在图中( )内填上正确的数:
(2)求乙车从B地返回到C地的过程中,y与x之间的函数关系式;
(3)当甲、乙两车行驶到距B地的路程相等时,甲、乙两车距B地的路程是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】分解因式:x2﹣4y2=__.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD中,BD垂直平分AC,垂足为点F,E为四边形ABCD外一点,且∠ADE=∠BAD,AE⊥AC.
(1)求证:四边形ABDE是平行四边形;
(2)如果DA平分∠BDE,AB=5,AD=6,求AC的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线l1∥l2∥l3,一等腰直角三角形ABC的三个顶点A,B,C分别在l1,l2,l3上,∠ACB=90°,AC交l2于点D,已知l1与l2的距离为1,l2与l3的距离为3,则
的值为( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校为了增强学生体质,决定开设以下体育课外活动项目:A.篮球 B.乒乓球C.羽毛球 D.足球,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制成了两幅不完整的统计图,

请回答下列问题:
(1)这次被调查的学生共有多少人?
(2)请你将条形统计图(2)补充完整;
(3)在平时的乒乓球项目训练中,甲、乙、丙、丁四人表现优秀,现决定从这四名同学中任选两名参加乒乓球比赛,求恰好选中甲、乙两位同学的概率(用树状图或列表法解答)
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,一次函数y=ax+b(a≠0)的图形与反比例函数y=
(k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=
,点B的坐标为(m,﹣2).(1)求△AHO的周长;
(2)求该反比例函数和一次函数的解析式.

相关试题