【题目】如图,经过原点的抛物线y=﹣x2﹣2mx(m>1)与x轴的另一个交点为A.过点P(﹣1,m)作直线PD⊥x轴于点D,交抛物线于点B,BC∥x轴交抛物线于点C.
![]()
(1)当m=2时.
①求线段BC的长及直线AB所对应的函数关系式;
②若动点Q在直线AB上方的抛物线上运动,求点Q在何处时,△QAB的面积最大?
③若点F在坐标轴上,且PF=PC,请直接写出符合条件的点F在坐标;
(2)当m>1时,连接CA、CP,问m为何值时,CA⊥CP?
参考答案:
【答案】(1)①直线AB所对应的函数关系式为y=x+4;
②当a=-
时,△QAB的面积最大,此时Q的坐标为(-
,
);
③符合条件的点F坐标为F1(﹣2,0),F2(0,0),F3(0,4);
(2)m=
.
【解析】
试题分析:(1)①将m=2代入y=﹣x2﹣2mx,得出y=﹣x2﹣4x,求出A(﹣4,0),B(﹣1,3),由B、C两点关于抛物线y=﹣x2﹣4x的对称轴x=﹣2对称,得出BC=2,运用待定系数法求出直线AB所对应的函数关系式;
②过点Q作QE∥y轴,交AB于点E,设Q(a,﹣a2﹣4a),则E(a,a+4),QE=(﹣a2﹣4a)﹣(a+4)=﹣a2﹣5a﹣4,由S△QAB=
QEAD求出S△QAB=﹣
(a+
)2+
,根据二次函数的性质即可求解;
③分两种情况进行讨论:若点F在x轴上,设F(x,0).根据PF=PC列出方程,解方程得到F1(﹣2,0),F2(0,0);若点F在y轴上,设F(0,y),根据PF=PC列出方程,解方程得到F3(0,4),F4(0,0)与F2(0,0)重合;
(2)过点C作CH⊥x轴于点H.先求出PB=m﹣1,BC=2(m﹣1),CH=2m﹣1,AH=1,再证明△ACH∽△PCB,根据相似三角形对应边成比例得出
,即
,解方程可求出m的值.
试题解析:(1)①当m=2时,y=﹣x2﹣4x,
令y=0,得﹣x2﹣4x=0,
解得x1=0,x2=﹣4,
则A(﹣4,0).
当x=﹣1时,y=3,
则B(﹣1,3).
∵抛物线y=﹣x2﹣4x的对称轴为直线x=﹣2,
∴B、C两点关于对称轴x=﹣2对称,
∴C(﹣3,3),BC=2.
设直线AB所对应的函数关系式为y=kx+b.
∵A(﹣4,0)、B(﹣1,3)在直线AB上,
∴
,解得![]()
∴直线AB所对应的函数关系式为y=x+4;
②过点Q作QE∥y轴,交AB于点E(如图1).
由题意可设Q(a,﹣a2﹣4a),则E(a,a+4),
∴QE=(﹣a2﹣4a)﹣(a+4)=﹣a2﹣5a﹣4.
∴S△QAB=
QEAD=
×(﹣a2﹣5a﹣4)×3=﹣
(a+
)2+
,
∴当a=-
时,△QAB的面积最大,此时Q的坐标为(-
,
);
③分两种情况:
若点F在x轴上,设F(x,0).
∵PF=PC,P(﹣1,2),C(﹣3,3),
∴(x+1)2+(2﹣0)2=(﹣3+1)2+(3﹣2)2,
整理,得x2+2x=0,
解得x1=﹣2,x2=0,
∴F1(﹣2,0),F2(0,0);
若点F在y轴上,设F(0,y).
∵PF=PC,P(﹣1,2),C(﹣3,3),
∴(0+1)2+(y﹣2)2=(﹣3+1)2+(3﹣2)2,
整理,得y2﹣4y=0,
解得y1=4,y2=0,
∴F3(0,4),F4(0,0)与F2(0,0)重合;
综上所述,符合条件的点F坐标为F1(﹣2,0),F2(0,0),F3(0,4);
(2)过点C作CH⊥x轴于点H(如图2).∵P(﹣1,m),B(﹣1,2m﹣1),
∴PB=m﹣1.∵抛物线y=﹣x2﹣2mx的对称轴为直线x=﹣m,其中m>1,
∴B、C两点关于对称轴x=﹣m对称,∴BC=2(m﹣1),
∴C(1﹣2m,2m﹣1),H(1﹣2m,0),∴CH=2m﹣1,∵A(﹣2m,0),∴AH=1.
由已知,得∠ACP=∠BCH=90°,∴∠ACH=∠PCB.又∵∠AHC=∠PBC=90°,
∴△ACH∽△PCB,∴
,即
,∴m=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列计算结果正确的是( )
① (abx)3=abx3;② (abx)3=a3b3x3;③-(6xy)2=-12x2y2 ;④ -(6xy)2=-36x2y2.
A. 只有①③ B. 只有②④ C. 只有②③ D. 只有③④
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列各式中,是一元二次方程的为( )
A.ax2+bx+c=0B.x2+2x﹣3
C.x2+y2=1D.(x﹣2)(x﹣4)=7
-
科目: 来源: 题型:
查看答案和解析>>【题目】当a=-1 时,(-a2)3 的结果是( )
A. -1 B. 1 C. a6 D. 以上答案都不对
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在同一平面内有四个点A、B、C、D.

(1)请按要求作出图形(注:此题作图不需要写出画法和结论)
①作射线AC;
②作直线BD,交射线AC相于点O;
③分别连接AB、AD;
④求作一条线段MN,使其等于AC﹣AB(用尺规作图,保留作图痕迹).
(2)观察B、D两点间的连线,我们容易判断出线段AB+AD>BD,理由是;
(3)若已知线段AC=80cm,小虫甲从点A出发沿AC向C爬行,速度是2cm/s;小虫乙从点C出发沿线段CA向A爬行,速度是3cm/s,经过t秒钟后,两只小虫相距25cm,请确定t的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如果(ambn)3=a9b12 ,那么m ,n 的值分别为( )
A. 9,4 B. 3,4 C. 4,3 D. 9,6
-
科目: 来源: 题型:
查看答案和解析>>【题目】若一元二次方程x2﹣(b﹣2)x+7=0的一次项系数为3,则b的值为( )
A.5B.-1C.﹣5D.3
相关试题