【题目】在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上一动点,点Q为边AC上一动点,且∠PDQ=90°.
![]()
(1)求ED、EC的长;
(2)若BP=2,求CQ的长;
(3)记线段PQ与线段DE的交点为点F,若△PDF为等腰三角形,求BP的长.
参考答案:
【答案】(1)
,
;(2)CQ
或CQ
;(3)
或![]()
【解析】
试题分析:(1)先根据勾股定理求得BC的长,再结合点D为BC的中点可得CD的长,然后证得△ABC∽△DEC,根据相似三角形的性质即可求得结果;
(2)分①当点P在AB边上时,②当点P在AB的延长线上时,根据相似三角形的性质求解即可;
(3)由△BPD∽△EQD可得
,若设BP=x ,则
,
,可得
,即得∠QPD=∠C,又可证∠PDE=∠CDQ,则可得△PDF∽△CDQ,再分①当CQ=CD时,②当QC=QD时,③当DC=DQ时,三种情况,根据等腰三角形的性质求解即可.
(1)在Rt△ABC中,∠A=90°,AB=6,AC=8
∴BC=10
点D为BC的中点
∴CD=5
可证△ABC∽△DEC
∴
, 即![]()
∴
,
;
(2)①当点P在AB边上时,在Rt△ABC中,∠B+∠C=90°,
在Rt△EDC中,∠DEC+∠C=90°,
∴∠DEC=∠B
∵DE⊥BC,∠PDQ=90°
∴∠PDQ=∠BDE=90°
∴∠BDP=∠EDQ
∴△BPD∽△EQD
∴
,即
,
∴![]()
∴CQ=EC-EQ
;
②当点P在AB的延长线上时,同理可得:
,
∴CQ=EC+EQ
;
(3)∵线段PQ与线段DE的交点为点F,
∴点P在边AB上
∵△BPD∽△EQD
∴![]()
若设BP=x ,则
,
,可得
∴∠QPD=∠C
又可证∠PDE=∠CDQ
∴△PDF∽△CDQ
∵△PDF为等腰三角形
∴△CDQ为等腰三角形
①当CQ=CD时,可得
,解得![]()
②当QC=QD时, 过点Q作QM⊥CB于M,
∴
,![]()
∴
,解得![]()
③当DC=DQ时,过点D作DN⊥CQ于N,
∴
,![]()
∴
,解得
(不合题意,舍去)
∴综上所述,
或
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校对七、八、九年级的学生进行体育水平测试,成绩评定为优秀、良好、合格、不合格四个等第.为了解这次测试情况,学校从三个年级随机抽取200名学生的体育成绩进行统计分析.相关数据的统计图、表如下:


根据以上信息解决下列问题:
(1)在统计表中,a的值为 ,b的值为 ;
(2)在扇形统计图中,八年级所对应的扇形圆心角为 度;
(3)若该校三个年级共有2000名学生参加考试,试估计该校学生体育成绩不合格的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,
和
是
分别沿着边AB、AC翻折180°形成的.DC的延长线交AE于点O,交BE的延长线于点F.若
,,则
的度数为_______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,写出△ABC各顶点的坐标以及△ABC关于x对称的△A1B1C1的各顶点坐标,并画出△ABC关于y对称的△A2B2C2.并求△ABC的面积。

-
科目: 来源: 题型:
查看答案和解析>>【题目】某商场销售国外、国内两种品牌的智能手机,这两种手机的进价和售价如表所示
国外品牌
国内品牌
进价(万元/部)
0.44
0.2
售价(万元/部)
0.5
0.25
该商场计划购进两种手机若干部,共需14.8万元,预计全部销售后可获毛利润共2.7万元.[毛利润=(售价﹣进价)×销售量]
(1)该商场计划购进国外品牌、国内品牌两种手机各多少部?
(2)通过市场调研,该商场决定在原计划的基础上,减少国外品牌手机的购进数量,增加国内品牌手机的购进数量.已知国内品牌手机增加的数量是国外品牌手机减少的数量的3倍,而且用于购进这两种手机的总资金不超过15.6万元,该商场应该怎样进货,使全部销售后获得的毛利润最大?并求出最大毛利润
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:
①EG=DF;②∠AEH+∠ADH=180 ;③△EHF≌△DHC;④若
,则3S△EDH=13S△DHC,其中结论正确的有___________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,梯形ABCD中,AD∥BC,点E是CD的中点,BE的延长线与AD的延长线相交于点F.
(1)求证:△BCE≌△FDE.
(2)连接BD,CF,判断四边形BCFD的形状,并证明你的结论.

相关试题