【题目】如图,AB是⊙O的直径,AC是⊙O的切线,切点为A,BC交⊙O于点D,点E是AC的中点.
(1)试判断直线DE与⊙O的位置关系,并说明理由;
(2)若⊙O的半径为2,∠B=50°,AC=4.8,求图中阴影部分的面积.
![]()
参考答案:
【答案】(1)直线DE与⊙O相切.理由见解析;(2)图中阴影部分的面积为4.8﹣
π.
【解析】(1)连接OE、OD,如图,根据切线的性质得∠OAC=90°,再证明△AOE≌△DOE得到∠ODE=∠OAE=90°,然后根据切线的判定定理得到DE为⊙O的切线;
(2)先计算出∠AOD=2∠B=100°,利用四边形的面积减去扇形的面积计算图中阴影部分的面积.
(1)直线DE与⊙O相切.理由如下:
连接OE、OD,如图,
![]()
∵AC是⊙O的切线,
∴AB⊥AC,
∴∠OAC=90°,
∵点E是AC的中点,O点为AB的中点,
∴OE∥BC,
∴∠1=∠B,∠2=∠3,
∵OB=OD,
∴∠B=∠3,
∴∠1=∠2,
在△AOE和△DOE中
,
∴△AOE≌△DOE,
∴∠ODE=∠OAE=90°,
∴OA⊥AE,
∴DE为⊙O的切线;
(2)∵点E是AC的中点,
∴AE=
AC=2.4,
∵∠AOD=2∠B=2×50°=100°,
∴图中阴影部分的面积=2×
×2×2.4﹣
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
(1)求k、b的值;
(2)若点D在y轴负半轴上,且满足S△COD=
S△BOC,求点D的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了计算湖中小岛上凉亭P到岸边公路l的距离,某数学兴趣小组在公路l上的点A处,测得凉亭P在北偏东60°的方向上;从A处向正东方向行走200米,到达公路l上的点B处,再次测得凉亭P在北偏东45°的方向上,如图所示.求凉亭P到公路l的距离.(结果保留整数,参考数据:
≈1.414,
≈1.732)
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列等式:
,
,
,将以上三个等式两边分别相加得:
.(1)观察发现:
__________
.(2)初步应用:利用(1)的结论,解决以下问题“①把
拆成两个分子为1的正的真分数之差,即
;②把
拆成两个分子为1的正的真分数之和,即
;( 3 )定义“
”是一种新的运算,若
,
,
,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知多项式4x6y2- 3x2y- x- 7,次数是b,4a与b互为相反数,在数轴上,点A表示数a,点B表示数b.
(1)a=____________,b=____________
(2)若小蚂蚁甲从点A处以3个单位长度/秒的速度向左运动,同时小蚂蚁乙从点B处以4单位长度/秒的速度也向左运动,丙同学观察两只小蚂蚁运动,在它们刚开始运动时,在原点0处放置一颗饭粒,乙在碰到饭粒后立即背着饭粒以原来的速度向相反的方向运动,设运动的时间为t秒,求甲、乙两只小蚂蚁到原点的距离相等时所对应的时间t.(写出解答过程)
(3)若小蚂蚁甲和乙约好分别从A,B两点,分别沿数轴甲向左,乙向右以相同的速度爬行,经过一段时间原路返回,刚好在16s时一起重新回到原出发点A和B,设小蚂蚁们出发t(s)时的速度为v(mm/s),v与t之间的关系如下图.(其中s表示时间单位秒,mm表示路程单位毫米)
t (s)
0<t≤2
2<t≤5
5<t≤16
v(mm/s)
10
16
8
①当2<t≤5时,你知道小蚂蚁甲与乙之间的距离吗?(用含有t的代数式表示);
②当t为__________________时,小蚂蚁甲乙之间的距离是42mm.(请直接写出答案)

-
科目: 来源: 题型:
查看答案和解析>>【题目】在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路.如:在图1中,若
是
的平分线
上一点,点
在
上,此时,在
截取
,连接
,根据三角形全等的判定
,容易构造出全等三角形⊿
和⊿
,参考上面的方法,解答下列问题:
如图2,在非等边⊿
中,
,
分别是
的平分线,且
交于点
.求证:
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如果两个三角形的两边和其中一边上的高分别对应相等,那么这两个三角形的第三边所对的角( )
A. 相等B. 不相等C. 互余D. 互补或相等
相关试题