【题目】请认真观察图形,解答下列问题:
如图①,1号卡片是边长为a的正方形,2号卡片是边长为b的正方形,3号卡片是一个长和宽分别为a,b的长方形.
(1)若选取1号、2号、3号卡片分别为1张、1张、2张,可拼成一个正方形,如图②,能用此图解释的乘法公式是______________;(请用字母a,b表示)
(2)若选取1号、2号、3号卡片分别为1张、2张、3张,可拼成一个长方形(不重叠无缝隙),则能用此图解释的整式乘法运算是____________________;(请画出图形,并用字母a,b表示)
(3)如果图中的a,b(a>b)满足a2+b2=57,ab=12,求a+b的值;
(4)已知(5+2x)2+(3+2x)2=60,求(5+2x)(2x+3)的值.
![]()
参考答案:
【答案】 (a+b)2=a2+2ab+b2 (a+b)(a+2b)=a2+3ab+2b2
【解析】(1)由图中正方形的面积=中间的各图片的面积的和,就可得出代数式.即(a+b)2=a2+2ab+b2;
(2)根据各类张数可知长方形面积:(a+b)(a+2b)= a2+3ab+2b2.
(3)根据完全平方公式变形可得;
(4)设5+2x=a,2x+3=b,则a2+b2=60,a﹣b=2,再运用完全平方公式可得.
解:(1)(a+b)2=a2+2ab+b2;
(2)如图,
![]()
(a+b)(a+2b)=a2+3ab+2b2.
(3)∵a2+b2=57,ab=12,
∴(a+b)2=a2+b2+2ab=81,
∵a+b>0,
∴a+b=9;
(4)设5+2x=a,2x+3=b,
则a2+b2=60,a﹣b=2,
∵(a﹣b)2=a2+b2﹣2ab
∴60﹣2ab=4,∴ab=28,
∴(5+2x)(2x+3)=28.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在直角坐标系xOy中,矩形OABC的顶点A、C分别在x轴和y轴正半轴上,点B的坐标是(5,2),点P是CB边上一动点(不与点C、点B重合),连结OP、AP,过点O作射线OE交AP的延长线于点E,交CB边于点M,且∠AOP=∠COM,令CP=x,MP=y.

(1)当x为何值时,OP⊥AP?
(2)求y与x的函数关系式,并写出x的取值范围;
(3)在点P的运动过程中,是否存在x,使△OCM的面积与△ABP的面积之和等于△EMP的面积?若存在,请求x的值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB、CD相交于点O,∠BOM=90°,∠DON=90°.
(1)若∠COM=∠AOC,求∠AOD的度数;
(2)若∠COM=
∠BOC,求∠AOC和∠MOD.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了鼓励市民节约用电,某市对居民用电实行“阶梯收费”(总电费=第一阶梯电费+第二阶梯电费).规定:用电量不超过200度按第一阶梯电价收费,超过200度的部分按第二阶梯电价收费.如图是张磊家2018年1月和3月所交电费的收据,则该市规定的第一阶梯电价和第二阶梯电价分别为每度( )

A. 0.5元、0.6元 B. 0.4元、0.5元 C. 0.3元、0.4元 D. 0.6元、0.7元
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点E是正方形ABCD对角线AC上一点,EF⊥AB,EG⊥BC,垂足分别为F,G,若正方形ABCD的周长是40cm.
(1)求证:四边形BFEG是矩形;
(2)求四边形EFBG的周长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,下列能判定AB∥CD的条件有( )个.
(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.

A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的对角线AC,BD相交于点O,延长CB至点F,使CF=CA,连接AF,∠ACF的平分线分别交AF,AB,BD于点E,N,M,连接EO,已知BD=
.(1)求正方形ABCD的边长;
(2)求OE的长;
(3)①求证:CN=AF;
②直接写出四边形AFBO的面积.

相关试题