【题目】随着社会的发展,私家车变得越来越普及,使用节能低油耗汽车,对环保有着非常积极的意义,某市有关部门对本市的某一型号的若干辆汽车,进行了一项油耗抽样实验:即在同一条件下,被抽样的该型号汽车,在油耗
的情况下,所行驶的路程(单位:
)进行统计分析,结果如图所示:
(注:记
为
,
为
,
为
,
为
,
为
)
请依据统计结果回答以下问题:
(1)试求进行该试验的车辆数;
(2)请补全频数分布直方图;
参考答案:
【答案】(1)30辆;(2)补图见解析
【解析】
(1)根据
所占的百分比以及频数,即可得到进行该试验的车辆数;
(2)根据
的百分比,计算得到
的频数,进而得到
的频数,据此补全频数分布直方图;
(1)进行该实验的车辆数为:9÷30%=30(辆);
(2)B:20%×30=6(辆)D:30-2-6-9-4=9(辆)补全频数分布直方图如下:
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线
与
轴交于
两点(点
在点
的左边),与
轴交于点
,顶点为
.(1)如图1,请求出
三点的坐标;(2)点
为
轴下方抛物线
上一动点.①如图2,若
时,抛物线的对称轴
交
轴于点
,直线
交
轴于点
,直线
交对称轴
于点
,求
的值;②如图3,若
时,点
在
轴上方的抛物线上运动,连接
交
轴于点
,且满足
当线段
运动时,
的度数大小发生变化吗?若不变,请求出
的值若变化,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-2,与x轴的一个交点在(-3,0)和(-4,0)之间,其部分图象如图所示.则下列结论:①4a-b=0;②c<0;③-3a+c>0;④4a-2b>at2+bt(t为实数);⑤点
,
,
是该抛物线上的点,则y1<y2<y3.其中正确结论的个数是( )
A.4B.3C.2D.1
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知等边
的边长是
,以
边上的高
,为边作等边三角形,得到第一个等边
;再以等边
的
边上的高
,为边作等边三角形,得到第二个等边
,再以等边
的
边上的高
为边作等边三角形,得到第三个等边
: ....记
的面积为
的面积为
的面积为
,如此下去,则
___________
-
科目: 来源: 题型:
查看答案和解析>>【题目】京杭大运河是世界文化遗产.综合实践活动小组为了测出某段运河的河宽(岸沿是平行的),如图,在岸边分别选定了点A、B和点C、D,先用卷尺量得AB=160m,CD=40m,再用测角仪测得∠CAB=30°,∠DBA=60°,求该段运河的河宽(即CH的长).

-
科目: 来源: 题型:
查看答案和解析>>【题目】为满足市场需求,某超市在五月初五“端午节”来临前夕,购进一种品牌粽子,每盒进价是40元.超市规定每盒售价不得少于45元.根据以往销售经验发现;当售价定为每盒45元时,每天可以卖出700盒,每盒售价每提高1元,每天要少卖出20盒.
(1)试求出每天的销售量y(盒)与每盒售价x(元)之间的函数关系式;
(2)当每盒售价定为多少元时,每天销售的利润P(元)最大?最大利润是多少?
(3)为稳定物价,有关管理部门限定:这种粽子的每盒售价不得高于58元.如果超市想要每天获得不低于6000元的利润,那么超市每天至少销售粽子多少盒?
-
科目: 来源: 题型:
查看答案和解析>>【题目】综合与实践
背景阅读 早在三千多年前,我国周朝数学家商高就提出:将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被记载于我国古代著名数学著作《周髀算经》中,为了方便,在本题中,我们把三边的比为3:4:5的三角形称为(3,4,5)型三角形,例如:三边长分别为9,12,15或3
,4
,5
的三角形就是(3,4,5)型三角形,用矩形纸片按下面的操作方法可以折出这种类型的三角形.实践操作 如图1,在矩形纸片ABCD中,AD=8cm,AB=12cm.
第一步:如图2,将图1中的矩形纸片ABCD沿过点A的直线折叠,使点D落在AB上的点E处,折痕为AF,再沿EF折叠,然后把纸片展平.
第二步:如图3,将图2中的矩形纸片再次折叠,使点D与点F重合,折痕为GH,然后展平,隐去AF.
第三步:如图4,将图3中的矩形纸片沿AH折叠,得到△AD′H,再沿AD′折叠,折痕为AM,AM与折痕EF交于点N,然后展平.

问题解决
(1)请在图2中证明四边形AEFD是正方形.
(2)请在图4中判断NF与ND′的数量关系,并加以证明;
(3)请在图4中证明△AEN(3,4,5)型三角形;
探索发现
(4)在不添加字母的情况下,图4中还有哪些三角形是(3,4,5)型三角形?请找出并直接写出它们的名称.
相关试题