【题目】如图,一次函数y=kx+b(k<0)与反比例函数
的图象相交于A、B两点,一次函数的图象与y轴相交于点C,已知点A(4,1)
![]()
(1)求反比例函数的解析式;
(2)连接OB(O是坐标原点),若△BOC的面积为3,求该一次函数的解析式.
参考答案:
【答案】(1)
;(2)
.
【解析】
(1)由点A的坐标结合反比例函数系数k的几何意义,即可求出m的值;
(2)设点B的坐标为(n,
),将一次函数解析式代入反比例函数解析式中,利用根与系数的关系可找出n、k的关系,由三角形的面积公式可表示出来b、n的关系,再由点A在一次函数图象上,可找出k、b的关系,联立3个等式为方程组,解方程组即可得出结论.
(1)∵点A(4,1)在反比例函数
的图象上,
∴m=4×1=4,
∴反比例函数的解析式为
.
(2)∵点B在反比例函数
的图象上,
∴设点B的坐标为(n,
).
将y=kx+b代入
中,得:kx+b=
,
整理得:
,∴4n=
,即nk=﹣1①.
令y=kx+b中x=0,则y=b,
即点C的坐标为(0,b),
∴S△BOC=
bn=3,∴bn=6②.
∵点A(4,1)在一次函数y=kx+b的图象上,
∴1=4k+b③.
联立①②③成方程组,即
,解得:
,
∴该一次函数的解析式为
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两车从A地匀速驶向B地,甲车比乙车早出发2小时,并且甲车图中休息了0.5小时后仍以原速度驶向B地,如图是甲、乙两车行驶的路程y(千米)与行驶的时间x(小时)之间的函数图象.下列说法:
①m=1,a=40;
②甲车的速度是40千米/小时,乙车的速度是80千米/小时;
③当甲车距离A地260千米时,甲车所用的时间为7小时;
④当两车相距20千米时,则乙车行驶了3或4小时,
其中正确的个数是( )

A. 1个B. 2个C. 3个D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店购买60件A商品和30件B商品共用了1080元,购买50件A商品和20件B商品共用了880元.
(1)A、B两种商品的单价分别是多少元?
(2)已知该商店购买B商品的件数比购买A商品的件数的2倍少4件,如果需要购买A、B两种商品的总件数不少于32件,且该商店购买的A、B两种商品的总费用不超过296元,那么该商店有哪几种购买方案?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,为了测量出楼房AC的高度,从距离楼底C处
米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:
的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈
,计算结果用根号表示,不取近似值).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知A1(1,0),A2(1,1),A3(-1,1),A4(-1,-1),A5(2,-1),…,则点A2 019的坐标为____________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=-2x+4交x轴和y轴于点A和点B,点C(0,-2)在y轴上,连接AC。
(1)求点A和点B的坐标;
(2)若点P是直线AB上一点,若△APC的面积为4,求点P;
(3)过点B的直线BH交x轴于点H(H点在点A右侧),当∠ABE=45时,求直线BE。

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中有一个△ABC,顶点A(﹣1,3),B(2,0),C(﹣3,﹣1).
(1)画出△ABC关于y轴的对称图形△A1B1C1(不写画法);
点A关于x轴对称的点坐标为
点B关于y轴对称的点坐标为
点C关于原点对称的点坐标为
(2)若网格上的每个小正方形的边长为1,则△ABC的面积是 .

相关试题