【题目】如图,在四边形ABCD中,AB=BC,∠ABC=∠CDA=90°,BE⊥AD于点E,且四边形ABCD的面积为144,则BE________
![]()
参考答案:
【答案】12
【解析】
作BF⊥CD交CD的延长线于点F,由已知条件可证得∠ABE=∠CBF,且由已知∠AEB=∠CFB=90°,AB=BC,所以△ABE≌△CBF,可得BE=BF,四边形ABCD的面积等于新正方形FBED的面积,即可得BE长.
过B点作BF⊥CD,与DC的延长线交于F点,则∠F=90°,
![]()
∵BE⊥AD,∴∠AEB=∠BED=90°,
又∵∠CDA=90°,
∴四边形BEDF是矩形,
∴∠EBF=90°,
∵∠ABC=90°,
∴∠ABE+∠EBC=∠CBF+∠EBC,
∴∠ABE=∠CBF,
又AB=BC,
∴△ABE≌△CBF,
∴BE=BF,
∴矩形BEDF为正方形,
∴S正方形BEDF=S△BCF+S四边形BEDC= S△BAE+S四边形BEDC=S四边形ABCD=144,
∴BE2=144,
∴BE=12,
故答案为:12.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(问题情境)
徐老师给爱好学习的小敏和小捷提出这样一个问题:
如图1,△ABC中,∠B=2∠C,AD是∠BAC的平分线.求证:AB+BD=AC
小敏的证明思路是:在AC上截取AE=AB,连接DE.(如图2)…
小捷的证明思路是:延长CB至点E,使BE=AB,连接AE. 可以证得:AE=DE(如图3)…
请你任意选择一种思路继续完成下一步的证明.
(变式探究)
“AD是∠BAC的平分线”改成“AD是BC边上的高”,其它条件不变.(如图4),AB+BD=AC成立吗?若成立,请证明;若不成立,写出你的正确结论,并说明理由.
(迁移拓展)
△ABC中,∠B=2∠C. 求证:AC2=AB2+ABBC. (如图5)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC和△ADE都是等腰直角三角形,∠BAC=∠DAE=90°,AB=AC=4,O为AC中点,若点D在直线BC上运动,连接OE,则在点D运动过程中,线段OE的最小值是为( )

A.
B.
C.1D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形ABCD边AD沿折痕AE折叠,使点D落在BC上的F处,已知AB=6,△ABF的面积为24,则EC等于( )

A.2B.
C.4D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点P在正方形ABCD边AD上,连接PB.过点B作一条射线与边DC的延长线交于点Q,使得∠QBE=∠PBC,其中E是边AB延长线上的点,连接PQ.若PQ2=PB2+PD2+2,则△PAB的面积为_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,∠ABC=30°,△CDE是等边三角形,点D在边AB上.

(1)如图1,当点E在边BC上时,求证DE=EB;
(2)如图2,当点E在△ABC内部时,猜想ED和EB数量关系,并加以证明;
(3)如图3,当点E在△ABC外部时,EH⊥AB于点H,过点E作GE∥AB,交线段AC的延长线于点G,AG=5CG,BH=3.求CG的长.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在边长为1的正方形网格中标有A、B、C、D、E、F六个格点,顶点在格点上的三角形叫做格点三角形,如格点三角形△ABC.

(1)△ABC的面积为 ;
(2)△ABC的形状为 ;
(3)根据图中标示的各点(A、B、C、D、E、F)位置,与△ABC全等的格点三角形是 .
相关试题