【题目】如图,在平面直角坐标系中,直线y=
与抛物线y=
+bx+c交于A、B两点,点A在x轴上,点B的横坐标为﹣8.
(1)求该抛物线的解析式;
(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.
①设△PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;
②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.
![]()
参考答案:
【答案】(1)
;(2)①l=
;当x=﹣3时,最大值为15;②
(
,2),
(
,2),
(
,
).
【解析】
试题分析:(1)利用直线解析式求出点A、B的坐标,再利用待定系数法求二次函数解析式解答;
(2)①利用直线解析式和抛物线解析式表示出PD,再利用同角的余角相等求出∠DPE=∠BAO,根据直线k值求出∠BAO的正弦和余弦值,然后表示出PE、DE,再根据三角形的周长公式列式整理即可得解,再根据二次函数的最值问题解答;
②分(i)点G在y轴上时,过点P作PH⊥x轴于H,根据正方形的性质可得AP=AG,∠PAG=90°,再求出∠PAH=∠AGO,然后利用“角角边”证明△APH和△GAO全等,根据全等三角形对应边相等可得PH=AO=2,然后利用二次函数解析式求解即可;(ii)点F在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,根据正方形的性质可得AP=FP,∠APF=90°,再根据同角的余角相等求出∠APM=∠FPN,然后利用“角边角”证明△APM和△FPN全等,根据全等三角形对应边相等可得PM=PN,从而得到点P的横坐标与纵坐标相等,再根据二次函数的解析式求解即可.
试题解析:(1)令y=0,则
=0,解得x=2,
x=﹣8时,y=
=
,
∴点A(2,0),B(﹣8,
),
把点A、B代入抛物线得,
,解得
,
所以,该抛物线的解析式
;
(2)①∵点P在抛物线上,点D在直线上,
∴PD=
﹣(
)=
,
∵PE⊥AB,
∴∠DPE+∠PDE=90°,
又∵PD⊥x轴,
∴∠BAO+∠PDE=90°,
∴∠DPE=∠BAO,
∵直线解析式k=
,
∴sin∠BAO=
,cos∠BAO=
,
∴PE=PDcos∠DPE=
PD,
DE=PDsin∠DPE=
PD,
∴△PDE的周长为l=PD+
PD+
PD=
PD=
(
)=
,
即l=
;
∵l=
,
∴当x=﹣3时,最大值为15;
②∵点A(2,0),
∴AO=2,
分(i)点G在y轴上时,过点P作PH⊥x轴于H,
在正方形APFG中,AP=AG,∠PAG=90°,
∵∠PAH+∠OAG=90°,∠AGO+∠OAG=90°,
∴∠PAH=∠AGO,
在△APH和△GAO中,
∠PAH=∠AGO,∠AHP=∠GOA=90°,AP=AG,
∴△APH≌△GAO(AAS),
∴PH=AO=2,
∴点P的纵坐标为2,
∴
=2,
整理得,
+3x﹣2=0,
解得x=
,
∴点
(
,2),
(
,2);
(ii)点F在y轴上时,过点PM⊥x轴于M,作PN⊥y轴于N,
在正方形APFG中,AP=FP,∠APF=90°,
∵∠APM+∠MPF=90°,∠FPN+∠MPF=90°,
∴∠APM=∠FPN,
在△APM和△FPN中,
∠APM=∠FPN,∠AMP=∠FNP=90°,AP=AF,
∴△APM≌△FPN(AAS),
∴PM=PN,
∴点P的横坐标与纵坐标相等,
∴
=x,
整理得,
+7x﹣10=0,
解得
=
,
=
(舍去),
∴点
(
,
),
综上所述,存在点
(
,2),
(
,2),
(
,
).
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×10n , 则n等于( )
A.10
B.11
C.12
D.13 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知4个矿泉水空瓶可以换矿泉水一瓶,现有12个矿泉水空瓶,若不交钱,最多可以喝矿泉水瓶( )
A.2瓶
B.3瓶
C.4瓶
D.5瓶 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠MON=30°,点A1,A2,A3,…在射线ON上,点B1,B2,B3,…在射线OM上,△A1B1A2,△A2B2A3,△A3B3A4,…均为等边三角形,若OA2=4,则△AnBnAn+1的边长为__________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠MAN是一钢架,且∠MAN=15°,为使钢架更加坚固,需在其内部加一些钢管CD、DE、EF…添加的钢管长度都与AC相等,则最多能添加这样的钢管______根.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在Rt△ABC中,∠ACB=90°,D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长,与BC的延长线交于点F.
(1)求证:BD=BF;
(2)若BC=6,AD=4,求⊙O的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】新型冠状病毒平均直径为100纳米,即0.00001厘米.0.00001用科学记数法表示为( )
A.1×105B.10×10﹣6C.1×10﹣5D.0.1×10﹣4
相关试题