【题目】已知y关于x的二次函数y=ax2﹣bx+2(a≠0).
(1)当a=﹣2,b=﹣4时,求该函数图象的对称轴及顶点坐标.
(2)在(1)的条件下,Q(m,t)为该函数图象上的一点,若Q关于原点的对称点P也落在该函数图象上,求m的值.
(3)当该函数图象经过点(1,0)时,若A(
,y1),B(
,y2)是该函数图象上的两点,试比较y1与y2的大小.
参考答案:
【答案】(1) 顶点坐标是(1,4),对称轴为直线x=1;(2) y1>y2.
【解析】分析:(1)将a、b的值代入函数解析式即可;
(2)根据(1)中的结论,即可求得m的值;
(3)根据题意和二次函数的性质,利用分类讨论的数学思想即可求得y1与y2的大小.
详解:(1)当a=-2,b=-4时,
y=-2x2+4x+2=-2(x-1)2+4,
∴该函数图象的顶点坐标是(1,4),对称轴为直线x=1;
(2)点Q(m,t)关于原点对称的点的坐标P是(-m,-t),
则
,
解得,m=±1;
(3)∵函数的图象经过点(1,0),
∴0=a-b+2,
∴b=a+2,
∵y=ax2-bx+2,
∴函数的对称轴为直线x=
,
当a>0时,
<
+
<
+
,
∵
+
-
=
,
+
-(
+
)=
,A(
,y1),B(
+
,y2)是该函数图象上的两点,
∴y2>y1,
当a<0时,
+
<
+
<
,
∵
-(
+
)=-
,
+
-(
+
)=-
,A(
,y1),B(
+
,y2)是该函数图象上的两点,
∴y1>y2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某化工车间发生有害气体泄漏,自泄漏开始到完全控制利用了40min,之后将对泄漏有害气体进行清理,线段DE表示气体泄漏时车间内危险检测表显示数据y与时间x(min)之间的函数关系(0≤x≤40),反比例函数y=
对应曲线EF表示气体泄漏控制之后车间危险检测表显示数据y与时间x(min)之间的函数关系(40≤x≤?).根据图象解答下列问题:(1)危险检测表在气体泄漏之初显示的数据是 ;
(2)求反比例函数y=
的表达式,并确定车间内危险检测表恢复到气体泄漏之初数据时对应x的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题满分9分)如图,以⊿ABC的一边AB为直径的半圆与其它两边AC,BC的交点分别为D,E,且
.
(1)试判断⊿ABC的形状,并说明理由;
(2)已知半圆的半径为5,BC=12,求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,C为线段AB上一点,点D为BC的中点,且AB=18cm,AC=4CD.
(1)图中共有 条线段;
(2)求AC的长;
(3)若点E在直线AB上,且EA=2cm,求BE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在正方形ABCD中,点E、F分别是边BC、AB上的点,且CE=BF.连结DE,过点E作EG⊥DE,使EG=DE,连结FG、FC

(1)请判断:FG与CE的数量关系是 ________,位置关系是________。
(2)如图2,若点E、F分别是边CB、BA延长线上的点,其他条件不变,(1)中结论是否仍然成立?请作出判断并给予证明;
(3)如图3,若点E、F分别是边BC、AB延长线上的点,其他条件不变,(1)中结论是否仍然成立?请直接写出你的判断。
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知边长为3的正方形ABCD中,点E在射线BC上,且BE=2CE,连接AE交射线DC于点F,若△ABE沿直线AE翻折,点B落在点B1处.
(1)如图1,若点E在线段BC上,求CF的长;
(2)求sin∠DAB1的值;
(3)如果题设中“BE=2CE”改为“
=x”,其它条件都不变,试写出△ABE翻折后与正方形ABCD公共部分的面积y与x的关系式及自变量x的取值范围(只要写出结论,不需写出解题过程).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,四边形ABCD的四个顶点分别在反比例函数
与
(x>0,0<m<n)的图象上,对角线BD//y轴,且BD⊥AC于点P.已知点B的横坐标为4.(1)当m=4,n=20时.
①若点P的纵坐标为2,求直线AB的函数表达式.
②若点P是BD的中点,试判断四边形ABCD的形状,并说明理由.
(2)四边形ABCD能否成为正方形?若能,求此时m,n之间的数量关系;若不能,试说明理由.

相关试题