【题目】在△ABC中,AB=AC=5,cos∠ABC=
,将△ABC绕点C顺时针旋转,得到△A1B1C.
(1)如图①,当点B1在线段BA延长线上时.①求证:BB1∥CA1;②求△AB1C的面积;
![]()
(2)如图②,点E是BC边的中点,点F为线段AB上的动点,在△ABC绕点C顺时针旋转过程中,点F的对应点是F1,求线段EF1长度的最大值与最小值的差.
![]()
参考答案:
【答案】(1)①证明见试题解析;②
;(2)
.
【解析】试题分析:(1)①根据旋转的性质和平行线的性质证明;
②过A作AF⊥BC于F,过C作CE⊥AB于E,根据等腰三角形的性质和三角形的面积公式解答;
(2)过C作CF⊥AB于F,以C为圆心CF为半径画圆交BC于F1,和以C为圆心BC为半径画圆交BC的延长线于F1,得出最大和最小值解答即可.
试题解析:(1)①证明:∵AB=AC,B1C=BC,
∴∠AB1C=∠B,∠B=∠ACB,
∵∠AB1C=∠ACB(旋转角相等),
∴∠B1CA1=∠AB1C,
∴BB1∥CA1;
②过A作AF⊥BC于F,过C作CE⊥AB于E,如图1:
![]()
∵AB=AC,AF⊥BC,BC=6,
∴BF=CF=3,
∴B1C=BC=6,
可得:B1B=2BE,
∵EC=
,
∴BE=
,则BB1=
,
故AB1=
﹣5=
,
∴△AB1C的面积为:
;
(2)如图2,过C作CF⊥AB于F,以C为圆心CF为半径画圆交BC于F1,EF1有最小值,
![]()
此时在Rt△BFC中,CF=
,
∴CF1=
,
∴EF1的最小值为
﹣3=
;
如图,以C为圆心BC为半径画圆交BC的延长线于F1,EF1有最大值;
此时EF1=EC+CF1=3+6=9,
∴线段EF1的最大值与最小值的差为9﹣
=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】菱形的对角线不一定具有的性质是( )
A.互相平分B.互相垂直C.每一条对角线平分一组对角D.相等
-
科目: 来源: 题型:
查看答案和解析>>【题目】根据图中给出的信息,解答下列问题:
(1)放入一个小球水面升高 cm,放入一个大球水面升高 cm;
(2)如果要使水面上升到50cm,应放入大球、小球各多少个?

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
A. -a是负数 B. 没有最小的正整数
C. 有最大的负整数 D. 有最大的正整数
-
科目: 来源: 题型:
查看答案和解析>>【题目】小亮的体重为43.90kg,精确到1kg得到的近似数为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的方程(a﹣3)x|a﹣1|+x﹣1=0是一元二次方程,则a的值是( )
A. ﹣1B. 2C. ﹣1或3D. 3
-
科目: 来源: 题型:
查看答案和解析>>【题目】(本题7分)如图,在Rt△ABC中,∠ACB=90°,E为AC上一点,且AE=BC,过点A作AD⊥CA,垂足为A,且AD=AC,AB、DE交于点F.
(1)判断线段AB与DE的数量关系和位置关系,并说明理由;
(2)连接BD、BE,若设BC=a,AC=b,AB=c,请利用四边形ADBE的面积证明勾股定理.

相关试题