【题目】反比例函数y=
在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数y=
的图象于点M,△AOM的面积为3.![]()
(1)求反比例函数的解析式;
(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数y=
的图象上,求t的值.
参考答案:
【答案】
(1)
解:∵△AOM的面积为3,
∴
|k|=3,
而k>0,
∴k=6,
∴反比例函数解析式为y=
;
(2)
解:当以AB为一边的正方形ABCD的顶点D在反比例函数y=
的图象上,则D点与M点重合,即AB=AM,
把x=1代入y=
得y=6,
∴M点坐标为(1,6),
∴AB=AM=6,
∴t=1+6=7;
当以AB为一边的正方形ABCD的顶点C在反比例函数y=
的图象上,
则AB=BC=t﹣1,
∴C点坐标为(t,t﹣1),
∴t(t﹣1)=6,
整理为t2﹣t﹣6=0,解得t1=3,t2=﹣2(舍去),
∴t=3,
∴以AB为一边的正方形有一个顶点在反比例函数y=
的图象上时,t的值为7或3.
【解析】(1)根据反比例函数k的几何意义得到
|k|=3,可得到满足条件的k=6,于是得到反比例函数解析式为y=
;(2)分类讨论:当以AB为一边的正方形ABCD的顶点D在反比例函数y=
的图象上,则D点与M点重合,即AB=AM,再利用反比例函数图象上点的坐标特征确定M点坐标为(1,6),则AB=AM=6,所以t=1+6=7;当以AB为一边的正方形ABCD的顶点C在反比例函数y=
的图象上,根据正方形的性质得AB=BC=t﹣1,则C点坐标为(t,t﹣1),然后利用反比例函数图象上点的坐标特征得到t(t﹣1)=6,再解方程得到满足条件的t的值.
【考点精析】解答此题的关键在于理解比例系数k的几何意义的相关知识,掌握几何意义:表示反比例函数图像上的点向两坐标轴所作的垂线段与两坐标轴围成的矩形的面积,以及对正方形的性质的理解,了解正方形四个角都是直角,四条边都相等;正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角;正方形的一条对角线把正方形分成两个全等的等腰直角三角形;正方形的对角线与边的夹角是45o;正方形的两条对角线把这个正方形分成四个全等的等腰直角三角形.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线BD∥EF,AE与BD交于点C,若∠ABC=30°,∠BAC=75°,则∠CEF的大小为( )

A.60°
B.75°
C.90°
D.105° -
科目: 来源: 题型:
查看答案和解析>>【题目】课前预习是学习数学的重要环节,为了了解所教班级学生完成数学课前预习的具体情况,王老师对本班部分学生进行了为期半个月的跟踪调查,他将调查结果分为四类,A:很好;B:较好;C:一般;D:较差.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:

(1)王老师一共调查了多少名同学?
(2)C类女生有名,D类男生有名,将上面条形统计图补充完整;
(3)为了共同进步,王老师想从被调查的A类和D类学生中各随机选取一位同学进行“一帮一”互助学习,请用列表法或画树形图的方法求出所选两位同学恰好是一位男同学和一位女同学的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,点C在AB的延长线上,CD与⊙O相切于点D,CE⊥AD,交AD的延长线于点E.

(1)求证:∠BDC=∠A;
(2)若CE=4,DE=2,求AD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.

(1)若轮船照此速度与航向航行,何时到达海岸线?
(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由.(参考数据:
≈1.4,
≈1.7) -
科目: 来源: 题型:
查看答案和解析>>【题目】某生物科技发展公司投资2000万元,研制出一种绿色保健食品.已知该产品的成本为40元/件,试销时,售价不低于成本价,又不高于180元/件.经市场调查知,年销售量y(万件)与销售单价x(元/件)的关系满足下表所示的规律.
销售单价x(元/件)
…
60
65
70
80
85
…
年销售量y(万件)
…
140
135
130
120
115
…
(1)y与x之间的函数关系式及自变量x的取值范围。
(2)经测算:年销售量不低于90万件时,每件产品成本降低2元,设销售该产品年获利润为W(万元)(W=年销售额﹣成本﹣投资),求出年销售量低于90万件和不低于90万件时,W与x之间的函数关系式;
(3)在(2)的条件下,当销售单位定为多少时,公司销售这种产品年获利润最大?最大利润为多少万元? -
科目: 来源: 题型:
查看答案和解析>>【题目】在四边形OABC中,AB∥OC,BC⊥x轴于C,A(1,﹣1),B(3,﹣1),动点P从O点出发,沿x轴正方向以2个单位/秒的速度运动.过P作PQ⊥OA于Q.设P点运动的时间为t秒(0<t<2),△OPQ与四边形OABC重叠的面积为S.

(1)求经过O、A、B三点的抛物线的解析式并确定顶点M的坐标;
(2)用含t的代数式表示P、Q两点的坐标;
(3)将△OPQ绕P点逆时针旋转90°,是否存在t,使得△OPQ的顶点O或Q落在抛物线上?若存在,直接写出t的值;若不存在,请说明理由;
(4)求S与t的函数解析式.
相关试题