【题目】如下图①,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(
,0),B(3,0),与y轴交于点C,连接BC.
(1)求抛物线的表达式;
(2)抛物线上是否存在点M,使得△MBC的面积与△OBC的面积相等,若存在,请直接写出点M的坐标;若不存在,请说明理由;
(3)点D(2,m)在第一象限的抛物线上,连接BD.在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P的坐标;如果不存在,请说明理由.
![]()
参考答案:
【答案】(1)、y=-
+2x+3;(2)、M1(
,
),M2(
,
);(3)、(
,
)
【解析】试题分析:(1)、利用待定系数法求出二次函数的解析式;(2)、根据等面积法得出点M的坐标;(3)、首先根据二次函数的解析式求出点C和点D的坐标,从而得出CD∥x轴,根据题意得出△CGB和△CDB全等,得出点G的坐标,利用待定系数法求出直线BP的函数解析式,然后求出一次函数和二次函数的交点坐标,根据点P在抛物线的左侧得出点P的坐标.
试题解析:(1)、∵抛物线
与x轴交于点A(
,0),B(3,0),
,解得
, ∴抛物线的表达式为
.
(2)、存在.M1(
,
),M2(
,
)
(3)、存在.如图,设BP交轴y于点G. ∵点D(2,m)在第一象限的抛物线上,
∴当x=2时,m=
. ∴点D的坐标为(2,3).
把x=0代入
,得y=3. ∴点C的坐标为(0,3). ∴CD∥x轴,CD = 2.
∵点B(3,0),∴OB =" OC" = 3 ∴∠OBC=∠OCB=45°.
∴∠DCB=∠OBC=∠OCB=45°,又∵∠PBC=∠DBC,BC=BC,
∴△CGB ≌ △CDB(ASA),∴CG=CD=2. ∴OG=OC
CG=1,∴点G的坐标为(0,1).
设直线BP的解析式为y=kx+1,将B(3,0)代入,得3k+1=0,解得k=
.
∴直线BP的解析式为y=
x+1. 令
x+1=
.解得
,
.
∵点P是抛物线对称轴x=
=1左侧的一点,即x<1,∴x=
.把x=
代入抛物线
中,解得y=
∴当点P的坐标为(
,
)时,满足∠PBC=∠DBC.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC 中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F

(1)求证:EO=FO;
(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.
-
科目: 来源: 题型:
查看答案和解析>>【题目】综合与实践
操作发现
如图,在平面直角坐标系中,已知线段
两端点的坐标分别为
,
,点
的坐标为
,将线段
沿
方向平移,平移的距离为
的长度.
(1)画出
平移后的线段
,直接写出点
对应点
的坐标;(2)连接
,
,
,已知
平分
,求证:
;拓展探索
(3)若点
为线段
上一动点(不含端点),连接
,
,试猜想
,
和
之间的关系,并说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )
A. BE=DF B. AE=CF C. AF//CE D. ∠BAE=∠DCF
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CE是平行四边形ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E,连接AC,BE,则下列结论:①AC=AD;②AO=
;③四边形ACBE是菱形;④
.其中正确的结论有____.(填写所有正确结论的序号)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在
中,
,
.点O是BC的中点,点D沿B→A→C方向从B运动到C.设点D经过的路径长为
,图1中某条线段的长为y,若表示y与x的函数关系的大致图象如图2所示,则这条线段可能是图1中的( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】某中学三班同学们就该校学生如何到校问题进行了一次调查,并将调查结果制成了条形图和扇形统计图,请你根据图表信息完成下列各题:

(1)此次共调查了___________位学生.
(2)请将条形统计图补充完整.
(3)这个学校有1000名学生,估计坐公交车的人有多少?
相关试题