【题目】如图,平行四边形ABCD中,AC与BD相交于点O,AB=AC,延长BC到点E,使CE=BC,连接AE,分别交BD、CD于点F、G. ![]()
(1)求证:△ADB≌△CEA;
(2)若BD=9,求AF的长.
参考答案:
【答案】
(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,∠ABC+∠BAD=180°.
又∵AB=AC,
∴∠ABC=∠ACB.
∵∠ACB+∠ACE=180°,
∴∠BAD=∠ACE.
∵CE=BC,
∴CE=AD,
在△ABE和△CEA中,
,
∴△ADB≌△CEA(SAS)
(2)解:∵△ADB≌△CEA,
∴AE=BD=9.
∵AD∥BC,
∴△ADF∽△EBF.
∴
=
.
∴
=
.
∴AF=3
【解析】(1)由平行四边形的性质得出AD=BC,∠ABC+∠BAD=180°,由等腰三角形的性质得出∠ABC=∠ACB.证出∠BAD=∠ACE,CE=AD,由SAS证明△ADB≌△CEA即可;(2)由全等三角形的性质得出AE=BD=6,由平行线得出△ADF∽△EBF,得出对应边成比例,即可得出结果.
【考点精析】掌握平行四边形的性质是解答本题的根本,需要知道平行四边形的对边相等且平行;平行四边形的对角相等,邻角互补;平行四边形的对角线互相平分.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如下图,在平面直角坐标系中,对
进行循环往复的轴对称变换,若原来点A坐标是
,则经过第2019次变换后所得的A点坐标是________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知电流在一定时间段内正常通过电子元件的概率是0.5,用列表或画树状图的方法分别求在一定时间段内,A、B之间和C、D之间电流能够正常通过的概率.(提示:可用1、0分别表示电子元件的通与不通两种状态)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB∥CD,EF分别交AB、CD于G、F两点,射线FM平分∠EFD,将射线FM平移,使得端点F与点G重合且得到射线GN.若∠EFC=110°,则∠AGN的度数是( )

A. 120° B. 125° C. 135° D. 145°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,BD丄AC 于D,EF丄AC 于F.∠AMD=∠AGF.∠1=∠2=35°
(1)求∠GFC的度数:
(2)求证:DM∥BC.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,CE平分∠BCD,∠1=∠2=70°,∠3=40°,AB和CD是否平行?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线AB∥CD,EF分别交AB、CD于G、F两点,射线FM平分∠EFD,将射线FM平移,使得端点F与点G重合且得到射线GN.若∠EFC=110°,则∠AGN的度数是( )

A. 120° B. 125° C. 135° D. 145°
相关试题