【题目】同学们知道,|8﹣3|表示8与3的差的绝对值,也可理解为数轴上表示数8与3两点间的距离.试探索:
(1)填空:|8+3|表示数轴上数8与数 两点间的距离;
(2)|x+5|+|x﹣2|表示数轴上数x与数 的距离和数x与数 的距离的和.
(3)满足|x+5|+|x﹣2|=7的所有整数x的值是 .
(4)由以上探索猜想对于任何有理数x,|x﹣3|+|x﹣6|是否有最小值?如果有写出最小值;如果没有,说明理由.
参考答案:
【答案】(1)﹣3;(2)﹣5,2;(3)﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2;(4)|x﹣3|+|x﹣6|≥3
【解析】
(1)由差的绝对值的几何意义求出数为-3;
(2)由差的绝对值的几何意义求出两定点对应的数为-5,2;
(3)由差的绝对值的几何意义求出到两定点距离和为7的整数为-5、-4、-3、-2、-1、0、1、2;
(4)由动点在线段AB不同位置分类说明,差的绝对值的几何意义求出到两定点距离和的最小值为3.
解:(1)∵|8﹣3|表示数8与3两点间的距离,
∴|8+3|表示数轴上数8与数﹣3两点间的距离,
故答案为﹣3;
(2)同理可得:|x+5|+|x﹣2|表示数轴上数x与数﹣5的距离和数x与数2的距离的和,
故答案为﹣5,2;
(3)点P对应的数为x,如图1所示:
![]()
∴线段AB上所有整数点对应x的取值﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2是都满足AP+BP=7,
故答案为﹣5、﹣4、﹣3、﹣2、﹣1、0、1、2;
(4)有最小值,最小值为3.其理由如下:
①若点P在线段AB上时,
![]()
∴|x﹣3|+|x﹣6|=AP+BP=3,
②若点P在线段AB的延长线上时,
![]()
∴|x﹣3|+|x﹣6|=AP+BP>3,
③若点P在线段AB的反向延长线上时,
![]()
∴|x﹣3|+|x﹣6|=AP+BP>3,
综合所述:|x﹣3|+|x﹣6|≥3.
∴|x﹣3|+|x﹣6|有最小值为3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系xOy中,边长为5的正方形ABCD的对角线AC、BD相交于点P,顶点A在x轴正半轴上运动,顶点B在y轴正半轴上运动(x轴的正半轴、y轴的正半轴都不包含原点O),顶点C. D都在第一象限。

(1)当点A坐标为(4,0)时,求点D的坐标;
(2)求证:OP平分∠AOB;
(3)直接写出OP长的取值范围(不要证明).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在平面直角坐标系中,一次函数y=kx+1的图象与反比例函数y=
的图象在第一象限相交于点A,过点A分别作x轴、y轴的垂线,垂足为点B、C,如果四边形OBAC是正方形.
(1)求一次函数的解析式。
(2)一次函数的图象与y轴交于点D. 在x轴上是否存在一点P,使得PA+PD最小?若存在,请求出P点坐标及最小值;若不存在,请说明理由。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,以AC为直径作⊙O,交AB于D,过点O作OE∥AB,交BC于E.
(1)求证:ED为⊙O的切线;
(2)如果⊙O的半径为
,ED=2,延长EO交⊙O于F,连接DF、AF,求△ADF的面积.
【答案】(1)证明见解析;(2)
【解析】试题分析:(1)首先连接OD,由OE∥AB,根据平行线与等腰三角形的性质,易证得
≌
即可得
,则可证得
为
的切线;
(2)连接CD,根据直径所对的圆周角是直角,即可得
利用勾股定理即可求得
的长,又由OE∥AB,证得
根据相似三角形的对应边成比例,即可求得
的长,然后利用三角函数的知识,求得
与
的长,然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.试题解析:(1)证明:连接OD,

∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是
的切线;(2)连接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,∵AC是直径,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面积为


【题型】解答题
【结束】
25【题目】【题目】已知,抛物线y=ax2+ax+b(a≠0)与直线y=2x+m有一个公共点M(1,0),且a<b.
(1)求b与a的关系式和抛物线的顶点D坐标(用a的代数式表示);
(2)直线与抛物线的另外一个交点记为N,求△DMN的面积与a的关系式;
(3)a=﹣1时,直线y=﹣2x与抛物线在第二象限交于点G,点G、H关于原点对称,现将线段GH沿y轴向上平移t个单位(t>0),若线段GH与抛物线有两个不同的公共点,试求t的取值范围.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法正确的是( )
①最大的负整数是﹣1;②数轴上表示数2 和﹣2的点到原点的距离相等;③当a≤0时,|a|=﹣a成立;④a的倒数是
;⑤(﹣2)2 和﹣22相等.A. 2 个 B. 3 个 C. 4 个 D. 5 个
-
科目: 来源: 题型:
查看答案和解析>>【题目】教室里的饮水机接通电源就进入自动程序,开机加热时每分钟上升10℃,加热到100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系.直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y(℃)和时间(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50℃的水,则接通电源的时间可以是当天上午的( )

A.7:20 B.7:30 C.7:45 D.7:50
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)5
﹣(﹣2
)+(﹣3
)﹣(+4
) (2)(﹣
﹣
+
)×(﹣24)(3)(﹣3)÷
×
×(﹣15)(4)﹣14+|(﹣2)3﹣10|﹣(﹣3)÷(﹣1)2017.
相关试题