【题目】一辆汽车在某次行驶过程中,油箱中的剩余油量y(升)与行驶路程x(千米)之间是一次函数关系,其部分图象如图所示.
(1)求y关于x的函数关系式;(不需要写定义域)
(2)已知当油箱中的剩余油量为8升时,该汽车会开始提示加油,在此次行驶过程中,行驶了500千米时,司机发现离前方最近的加油站有30千米的路程,在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是多少千米?
![]()
参考答案:
【答案】(1)该一次函数解析式为y=﹣
x+60.(2)在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
【解析】
(1)根据函数图象中点的坐标利用待定系数法求出一次函数解析式;
(2)根据一次函数图象上点的坐标特征即可求出剩余油量为8升时行驶的路程,即可求得答案.
(1)设该一次函数解析式为y=kx+b,
将(150,45)、(0,60)代入y=kx+b中,得
,解得:
,
∴该一次函数解析式为y=﹣
x+60;
(2)当y=﹣
x+60=8时,
解得x=520,
即行驶520千米时,油箱中的剩余油量为8升.
530﹣520=10千米,
油箱中的剩余油量为8升时,距离加油站10千米,
∴在开往该加油站的途中,汽车开始提示加油,这时离加油站的路程是10千米.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了比较市场上甲、乙两种电子钟每日走时误差的情况,从这两种电子钟中,各随机抽取10台进行测试,两种电子钟走时误差的数据如下表(单位:秒):
编号
类型
一
二
三
四
五
六
七
八
九
十
甲种电子钟
1
-3
-4
4
2
-2
2
-1
-1
2
乙种电子钟
4
-3
-1
2
-2
1
-2
2
-2
1
(1) 计算甲、乙两种电子钟走时误差的平均数;
(2) 计算甲、乙两种电子钟走时误差的方差;
(3) 根据经验,走时稳定性较好的电子钟质量更优.若两种类型的电子钟价格相同,请问:你买哪种电子钟?为什么?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图b的形状拼成一个正方形.

(1)你认为图b中的阴影部分的正方形的边长等于多少?
答:
(2)请用两种不同的方法求图b中阴影部分的面积.
方法1:
方法2:
(3)仔细观察图b,写出下列三个代数式之间的等量关系.
代数式:(m+n)2,(m-n)2,4mn
答:
(4)根据(3)题中所写的等量关系,解决如下问题.
若a+b=8,ab=5,则(a-b)2 = .
-
科目: 来源: 题型:
查看答案和解析>>【题目】用若干个形状、大小完全相同的矩形纸片围成正方形,4个矩形纸片围成如图①所示的正方形,其阴影部分的面积为12;8个矩形纸片围成如图②所示的正方形,其阴影部分的面积为8;12个矩形纸片围成如图③所示的正方形,其阴影部分的面积为__.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知四边形ABCD中,
平分
,且∠ACB=40°,∠BAC=70°.(1)AD与BC平行吗?试写出推理过程;
(2)求
和
的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,五个正方形面积分别记为S1,S2,S3,S4,S5,若S1=2,S3=3,S5=5,则S2+S4=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】探究:如图①,在△ABC 中,∠BAC=90°,AB=AC,直线 m 经过点 A,BD⊥m 于点 D,CE⊥m 于点 E,求证:△ABD≌△CAE.
应用:如图②,在△ABC 中,AB=AC,D、A、E 三点都在直线 m 上,并且有∠BDA=∠AEC=∠BAC,求证:DE=BD+CE.

相关试题