【题目】已知抛物线C1:y=x2+2x﹣3与x轴交于点A,B(点A在点B左侧),与y轴交于点C,抛物线C2:y=ax2+bx+c经过点B,与x轴的另一个交点为E(﹣4,0),与y轴交于点D(0,2).
(1)求抛物线C2的解析式;
(2)设点P为线段AB上一动点(点P不与点A,B重合),过点P作x轴的垂线交抛物线C1于点M,交抛物线C2于点N.
①当四边形AMBN的面积最大时,求点P的坐标;
②当CM=DN≠0时,求点P的坐标.![]()
参考答案:
【答案】
(1)
解:在y=x2+2x﹣3中,令y=0可得0=x2+2x﹣3,解得x=﹣3或x=1,令x=0可得y=﹣3,
∴A(﹣3,0),B(1,0),C(0,﹣3),
设抛物线C2的解析式为y=ax2+bx+c,
把B、D、E三点坐标代入可得
,解得
,
∴抛物线C2的解析式为y=﹣
x2﹣
x+2
(2)
解:设P(x,0)(﹣3<x<1),则M(x,x2+2x﹣3),N(x,﹣
x2﹣
x+2),
①∵点P为线段AB上一动点,
∴MN=﹣
x2﹣
x+2﹣(x2+2x﹣3)=﹣
x2﹣
x+5,
∴S四边形AMBN=
ABMN=
×4(﹣
x2﹣
x+5)=﹣3x2﹣7x+10=﹣3(x+
)2+
,
∵﹣3<0,
∴当x=﹣
时,S四边形AMBN有最大值,
此时P点坐标为(﹣
,0);
②分CM和DN平行和不平行两种情况,
当CM与DN不平行时,如图1,作MF⊥CD于F,NG⊥CD于G,
![]()
在Rt△MFC和Rt△NGD中
![]()
∴Rt△MFC≌Rt△NGD(HL),
∴FC=GD,
∴PM﹣PN=FO﹣OG=OC﹣OD=3﹣2=1,
∴﹣x2﹣2x+3﹣(﹣
x2﹣
x+2)=1,解得x=﹣1或x=0(舍去),
∴P(﹣1,0);
当CM∥DN时,如图2,
![]()
则四边形MNDC为平行四边形,
∴MN=CD=2+3=5,
∴﹣
x2﹣
x+5=5,解得x=0(舍去)或x=﹣
,
∴P(﹣
,0);
综上可知P点坐标为(﹣1,0)或(﹣
,0)
【解析】(1)可先求得A、B、C的坐标,利用待定系数法可求得抛物线C2的解析式;(2)可设P(x,0),①则可表示出M、N的坐标,可表示出MN的长,从而可用x表示出四边形AMBN的面积,利用二次函数的性质可求得当其取最大值时x的值,可求得P点坐标;②分CM和DN平行和不平行两种情况,分别构造全等三角形可得到关于x的方程,从而可求得P点坐标.
【考点精析】本题主要考查了二次函数的性质和二次函数的最值的相关知识点,需要掌握增减性:当a>0时,对称轴左边,y随x增大而减小;对称轴右边,y随x增大而增大;当a<0时,对称轴左边,y随x增大而增大;对称轴右边,y随x增大而减小;如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a才能正确解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,⊙O是等边△ABC的外接圆,M是BC延长线上一点,连接AM交⊙O于点D,延长BD至点N,使得BN=AM,连接CN,MN.

(1)判断△CMN的形状,并证明你的结论;
(2)求证:CN是⊙O的切线;
(3)若等边△ABC的边长是2,求ADAM的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上两点A、B对应的数分别为﹣1、3,点P为数轴上一动点,其对应的数为x.
(1)若点P到点A,点B的距离相等,点P对应的数是 .
(2)数轴上,点P到点A、点B的距离之和为5,则x的值为 ;
(3)当点P以每秒1个单位长度的速度从原点O向左运动,同时点B以每秒3个单位长度的速度沿数轴向左运动(点A保持不动),当点P到点A、点B的距离相等时,求运动时间t的值?

-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司生产的商品市场指导价为每千克150元,公司的实际销售价格可以浮动x个百分点(即销售价格=150(1+x%)),经过市场调研发现,这种商品的日销售量p(千克)与销售价格浮动的百分点x之间的函数关系为p=﹣2x+24.若该公司按浮动﹣12个百分点的价格出售,每件商品仍可获利10%.
(1)求该公司生产销售每千克商品的成本为多少元?
(2)当该公司的商品定价为多少元时,日销售利润为576元?(说明:日销售利润=(销售价格一成本)×日销售量)
(3)该公司决定每销售一千克商品就捐赠a元利润(a≥1)给希望工程,公司通过销售记录发现,当价格浮动的百分点大于﹣1时,扣除捐赠后的日销售利润随x的增大而减小,直接写出a的取值范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】松雷中学刚完成一批校舍的修建,有一些相同的办公室需要粉刷墙面.一天3名一级技工去粉刷7个办公室,结果其中有90m2墙面未来得及粉刷;同样时间内4名二级技工粉刷了7个办公室之外,还多粉刷了另外的70m2墙面.每名一级技工比二级技工一天多粉刷40m2墙面.
(1)求每个办公室需要粉刷的墙面面积.
(2)已知每名一级技工每天需要支付费用100元,每名二级技工每天需要支付费用90元.松雷中学有40个办公室的墙面和720m2的展览墙需要粉刷,现有3名一级技工的甲工程队,4名二级技工的乙工程队,要来粉刷墙面.松雷中学有两个选择方案,方案一:全部由甲工程队粉刷;方案二:全部由乙工程队粉刷;若使得总费用最少,松雷中学应如何选择方案,请通过计算说明.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于
EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M。
(1)若∠ACD=114°,求∠MAB的度数;
(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN。
-
科目: 来源: 题型:
查看答案和解析>>【题目】A、B两地相距400km,甲、乙两车分别从A、B两地同时出发,相向而行,甲车以每小时100km的速度匀速行驶1h后,休息了1h,然后按原速继续行驶到B地,乙车以每小时80km的速度匀速行驶到A地.
(1)当乙车经过甲车休息的地方时,乙车行驶的时间是 h;
(2)当甲、乙两车相遇时,求乙车行驶的时间;
(3)当甲、乙两车相距40km时,求乙车行驶的时间.
相关试题