【题目】填空,把下面的推理过程补充完整,并在括号内注明理由:
如图,已知A、B、C、D在同一直线上,AE∥DF,AC=BD,∠E=∠F,求证:BE∥CF.
![]()
证明:∵AE∥DF(已知)
∴_________(两直线平行,内错角相等)
∵AC=BD(已知)
又∵AC=AB+BC,BD=BC+CD
∴________(等式的性质)
∵∠E=∠F(已知)
∴△ABE≌△DCF(___________)
∴∠ABE=∠DCF(_________________)
∵ABF+∠CBE=180°,∠DCF+∠BCF=180°
∴∠CBE=∠BCF(__________________)
∴BE∥CF(________________________)
参考答案:
【答案】∠A=∠D;AB=CD;AAS;全等三角形的对应角相等;等角的补角相等;内错角相等的两直线平行.
【解析】
欲证明BE∥CF,只要证明∠EBC=∠FCB,只要证明△ABE≌△DCF即可解决问题.
证明:∵AE∥DF(已知)
∴∠A=∠D(两直线平行,内错角相等)
∵AC=BD(已知)AC=AB+BC,BD=BC+CD
∴AB=CD(等式的性质)
又∵∠E=∠F(已知)
∴△ABE≌△DCF(AAS)
∴∠ABE=∠DCF(全等三角形的对应角相等)
∵∠ABE+∠CBE=180°,∠DCF+∠BCF=180°
∴∠CBE=∠BCF(等角的补角相等)
∴BE∥CF(内错角相等两直线平行)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(-2,1),B(-1,4),C(-3,2).
(1)画出△ABC关于点B成中心对称的图形△A1BC1;
(2)以原点O为位似中心,相似比为1∶2,在y轴的左侧,画出△ABC放大后的图形△A2B2C2,并直接写出点C2的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)化简:
(2)计算:
;(3)化简:
;(4)已知
求代数式
的值;(5)已知
求代数式
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】(本小题满分8分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读下面的材料并填空:
①(1﹣
)(1+
)=1﹣
,反过来,得1﹣
=(1﹣
)(1+
)=
×
;②(1﹣
)(1+
)=1﹣
,反过来,得1﹣
=(1﹣
)(1+
)= × ;③(1﹣
)(1+
)=1﹣
,反过来,得1﹣
= =
;利用上面的材料中的方法和结论计算下题:
(1﹣
)(1﹣
)(1﹣
)……(1﹣
)(1﹣
)(1﹣
). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某足球运动员站在点O处练习射门,将足球从离地面0.5m的A处正对球门踢出(点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y=at2+5t+c,已知足球飞行0.8s时,离地面的高度为3.5m.
(1)足球飞行的时间是多少时,足球离地面最高?最大高度是多少?
(2)若足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x=10t,已知球门的高度为2.44m,如果该运动员正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.
(1)求证:△ABC≌△ADE;
(2)求∠FAE的度数;
(3)求证:CD=2BF+DE.

相关试题