【题目】如图,反比例函数y=
与一次函数y=ax+b的图象交于点A(2,2),B(
,n).
(1)求这两个函数的解析式;
(2)将一次函数y=ax+b的图象沿y轴向下平移m个单位,使平移后的图象与反比例函数y=
的图象有且只有一个交点,求m的值.
![]()
参考答案:
【答案】(1)y=-4x+10(2)m=2或m=18.
【解析】试题分析:(1)由点A在反比例函数的图象上,结合反比例函数图象上的点的坐标特征即可得出反比例函数的解析式;由点B的横坐标以及反比例函数的解析式即可得出点B的坐标,再由A、B点的坐标利用待定系数法即可求出一次函数得解析式;(2)结合(1)中得结论找出平移后的直线的解析式,将其代入反比例函数解析式中,整理得出关于x的二次方程,令其根的判别式△=0,即可得出关于m的一元二次方程,解方程即可得出结论.
试题解析:(1)∵A(2,2)在反比例函数y=
的图象上,
∴k=4.
∴反比例函数的解析式为 y=
.
又∵点B(
,n)在反比例函数y=
的图象上,
∴
,解得:n=8,
即点B的坐标为(
,8).
由A(2,2)、B(
,8)在一次函数y=ax+b的图象上,
得:
,
解得:
,
∴一次函数的解析式为y=﹣4x+10.
(2)将直线y=﹣4x+10向下平移m个单位得直线的解析式为y=﹣4x+10﹣m,
∵直线y=﹣4x+10﹣m与双曲线y=
有且只有一个交点,
令
,得4x2+(m﹣10)x+4=0,
∴△=(m﹣10)2﹣64=0,
解得:m=2或m=18.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一透明的敞口正方体容器ABCD-A′B′C′D′中装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE=α).
探究:如图①,液面刚好过棱CD,并与棱BB′交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图②所示.
解决问题:
(1)CQ与BE的位置关系是________,BQ的长是________dm;
(2)求液体的体积(提示:V液=S△BCQ×高AB);
(3)求液面到桌面的高度和倾斜角α的度数(
).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=
x+3与y轴交于点A,与x轴交于点C,直线l1与y轴交于点A,与x轴交于点B,且两直线互相垂直.(1)点A的坐标为________,点B的坐标为________,点C的坐标为________;
(2)已知双曲线y=-
与l1的交点坐标为(-1,k),求k的值;(3)请利用图象直接写出不等式-
>
x+3的解集.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y=x+m的图象与反比例函数y=
的图象交于A,B两点,且与x轴交于点C,点A的坐标为(2,1).(1)求m及k的值;
(2)求点C的坐标,并结合图象写出不等式组0<x+m≤
的解集.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知某一次函数与反比例函数的图象相交于A(1,3),B(m,1),求:
(1)m的值与一次函数的解析式;
(2)△ABO的面积.

-
科目: 来源: 题型:
查看答案和解析>>【题目】若x2﹣6x+7=(x﹣3)2+n,则n= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】一只不透明的袋子中装有4个质地、大小均相同的小球,这些小球分别标有数字3,3,5,x,甲、乙两人每次同时从袋中各随机摸出1个球,并计算摸出的这2个球上数字之和,记录后将小球放回袋中搅匀,进行重复实验.实验数据如下表:

(1)如果实验继续进行下去,根据上表数据,出现“和为8”的频率稳定在它的概率附近,估计出现“和为8”的概率是________;
(2)如果摸出的这两个小球上数字之和为9的概率是
,那么x的值可以取4吗?请用列表法或画树状图法说明理由;如果x的值不可以取4,请写出一个符合要求的x的值.
相关试题