【题目】如图,一艘轮船以18海里/时的速度由西向东方向航行,行至A处测得灯塔P在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B处又测得灯塔P在它的北偏东45°方向上,求轮船与灯塔的最短距离.(精确到0.1, ≈1.73)


参考答案:

【答案】解:过点P作PC⊥AB于C点,即PC的长为轮船与灯塔的最短距离,根据题意,得

AB=18× =6,∠PAB=90°﹣60°=30°,∠PBC=90°﹣45°=45°,∠PCB=90°,

∴PC=BC,

在Rt△PAC中,tan30°= = ,即 =

解得PC=3 +3≈8.2(海里),

∴轮船与灯塔的最短距离约为8.2海里.


【解析】根据题意,一艘轮船以18海里/时的速度由西向东方向航行,行至A处测得灯塔P在它的北偏东60°的方向上,得到AB=6,∠PAB=30°,∠PBC=45°,∠PCB=90°,所以PC=BC,在Rt△PAC中,根据三角函数值求出tan30°,解得PC≈8.2(海里),所以轮船与灯塔的最短距离约为8.2海里.
【考点精析】掌握关于方向角问题是解答本题的根本,需要知道指北或指南方向线与目标方向 线所成的小于90°的水平角,叫做方向角.

关闭