【题目】如图,点A、B、C、D均在⊙O上,FB与⊙O相切于点B,AB与CF交于点G,OA⊥CF于点E,AC∥BF. ![]()
(1)求证:FG=FB.
(2)若tan∠F=
,⊙O的半径为4,求CD的长.
参考答案:
【答案】
(1)证明:∵OA=OB,
∴∠OAB=∠OBA,
∵OA⊥CD,
∴∠OAB+∠AGC=90°.
∵FB与⊙O相切,
∴∠FBO=90°,
∴∠FBG+OBA=90°,
∴AGC=∠FBG,
∵∠AGC=∠FGB,
∴∠FGB=∠FBG,
∴FG=FB
(2)解:如图,
设CD=a,
∵OA⊥CD,
∴CE=
CD=
a.
∵AC∥BF,
∴∠ACF=∠F,
∵tan∠F= ![]()
tan∠ACF=
=
,即
=
,
解得AE=
a,
连接OC,OE=4﹣
a,
∵CE2+OE2=OC2,
∴(
a)2+(4﹣
a)2=4,
解得a=
,
CD= ![]()
![]()
【解析】(1)根据等腰三角形的性质,可得∠OAB=∠OBA,根据切线的性质,可得∠FBG+OBA=90°,根据等式的性质,可得∠FGB=∠FBG,根据等腰三角形的判定,可得答案;(2)根据平行线的性质,可得∠ACF=∠F,根据等角的正切值相等,可得AE,根据勾股定理,可得答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】有四张正面分别标有数字﹣1,0,1,2的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗均匀.
(1)随机抽取一张卡片,求抽到数字“﹣1”的概率;
(2)随机抽取一张卡片,然后不放回,再随机抽取一张卡片,请用列表或画树状图的方法求出第一次抽到数字“2”且第二次抽到数字“0”的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】某蔬菜生产基地用装有恒温系统的大棚栽培一种适宜生长温度为15﹣20℃的新品种,如图是某天恒温系统从开启到关闭及关闭后,大棚里温度y(℃)随时间x(h)变化的函数图象,其中AB段是恒温阶段,BC段是双曲线y=
的一部分,请根据图中信息解答下列问题: 
(1)求0到2小时期间y随x的函数解析式;
(2)恒温系统在一天内保持大棚内温度不低于15℃的时间有多少小时? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在ABCD中,对角线AC与BD相交于点O,∠CAB=∠ACB,过点B作BE⊥AB交AC于点E.

(1)求证:AC⊥BD;
(2)若AB=14,cos∠CAB=
,求线段OE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.

(1)求△ACD的面积(用含a的代数式表示);
(2)求点D到射线BN的距离(用含有a的代数式表示);
(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算正确的是( )
A.sin60°=
B.a6÷a2=a3
C.(﹣2)0=2
D.(2a2b)3=8a6b3 -
科目: 来源: 题型:
查看答案和解析>>【题目】为了了解市民“获取新闻的最主要途径”,某市记者开展了一次抽样调查,根据调查结果绘制了如下尚不完整的统计图.

根据以上信息解答下列问题:
(1)这次抽样调查的样本容量是;
(2)通过“电视”了解新闻的人数占被调查人数的百分比为;扇形统计图中,“手机上网”所对应的圆心角的度数是;
(3)请补全条形统计图;
(4)若该市约有70万人,请你估计其中将“电脑和手机上网”作为“获取新闻的最主要途径”的总人数.
相关试题