【题目】代数式ax2+bx+c(a≠0,a,b,c是常数)中,x与ax2+bx+c的对应值如下表:
x | ﹣1 | ﹣ | 0 |
| 1 |
| 2 |
| 3 |
ax2+bx+c | ﹣2 | ﹣ | 1 |
| 2 |
| 1 | ﹣ | ﹣2 |
请判断一元二次方程ax2+bx+c=0(a≠0,a,b,c是常数)的两个根x1 , x2的取值范围是下列选项中的( )
A.﹣
<x1<0,
<x2<2
B.﹣1<x1<﹣
,2<x2< ![]()
C.﹣
<x1<0,2<x2< ![]()
D.﹣1<x1<﹣
,
<x2<2
参考答案:
【答案】C
【解析】解:根据表格可知,代数式ax2+bx+c=0时,对应的x的值在﹣
~0和2~
之间,
即:一元二次方程ax2+bx+c=0(a≠0,a,b,c是常数)的两个根x1 , x2的取值范围是﹣
<x1<0,2<x2< ![]()
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将一幅三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.

(1)求证:CF∥AB.
(2)求∠DFC的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】数学实验室:

制作4张全等的直角三角形纸片(如图1),把这4张纸片拼成以弦长c为边长的正方形构成“弦图”(如图2),古代数学家利用“弦图”验证了勾股定理.
探索研究:
(1)小明将“弦图”中的2个三角形进行了运动变换,得到图3,请利用图3证明勾股定理;
数学思考:
(2)小芳认为用其它的方法改变“弦图”中某些三角形的位置,也可以证明勾股定理.请你想一种方法支持她的观点(先在备用图中补全图形,再予以证明).
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列命题:①两条直线相交,一个角的两邻补角相等,则这两条直线垂直;②同位角相等;③点(5,6)与点(6,5)表示同一点;④若两个同旁内角互补,则它们的角平分线互相垂直;⑤点(
,5)在第二象限.其中假命题的个数为( )A. 4B. 3C. 2D. 1
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,AB=AC,D是BC的中点,以AC为腰向外作等腰直角△ACE,∠EAC=90°,连接BE,交AD于点F,交AC于点G.
(1)求证:∠AEB=∠ACF;
(2)求证:EF2BF22AC2.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AB∥CD,∠EBF=2∠ABE,∠EDF=2∠CDE,则∠E与∠F之间满足的数量关系是( )
A. ∠E=∠FB. ∠E+∠F=180°
C. 3∠E+∠F=360°D. 2∠E-∠F=90°
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,一张四边形纸片ABCD,∠A=50°,∠C=150°.若将其按照图②所示方式折叠后,恰好MD′∥AB,ND′∥BC,则∠D的度数为 .

相关试题