【题目】如图,在矩形AOBC中,O为坐标原点,OA、OB分别在x轴、y轴上,点B的坐标为(0,3
),∠ABO=30°,将△ABC沿AB所在直线对折后,点C落在点D处,则点D的坐标为( ) ![]()
A.(
,
)
B.(2,
)
C.(
,
)
D.(
,3﹣
)
参考答案:
【答案】A
【解析】解:∵四边形AOBC是矩形,∠ABO=30°,点B的坐标为(0,3
), ∴AC=OB=3
,∠CAB=30°,
∴BC=ACtan30°=3
×
=3,
∵将△ABC沿AB所在直线对折后,点C落在点D处,
∴∠BAD=30°,AD=3
,
过点D作DM⊥x轴于点M,
∵∠CAB=∠BAD=30°,
∴∠DAM=30°,
∴DM=
AD=
,
∴AM=3
×cos30°=
,
∴MO=
﹣3=
,
∴点D的坐标为(
,
).
故选:A.![]()
【考点精析】通过灵活运用矩形的性质和翻折变换(折叠问题),掌握矩形的四个角都是直角,矩形的对角线相等;折叠是一种对称变换,它属于轴对称,对称轴是对应点的连线的垂直平分线,折叠前后图形的形状和大小不变,位置变化,对应边和角相等即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,分别是可活动的菱形和平行四边形学具,已知平行四边形较短的边与菱形的边长相等.

(1)在一次数学活动中,某小组学生将菱形的一边与平行四边形较短边重合,摆拼成如图1所示的图形,AF经过点C,连接DE交AF于点M,观察发现:点M是DE的中点.
下面是两位学生有代表性的证明思路:
思路1:不需作辅助线,直接证三角形全等;
思路2:不证三角形全等,连接BD交AF于点H.…
请参考上面的思路,证明点M是DE的中点(只需用一种方法证明);
(2)如图2,在(1)的前提下,当∠ABE=135°时,延长AD、EF交于点N,求
的值;
(3)在(2)的条件下,若
=k(k为大于
的常数),直接用含k的代数式表示
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB为⊙O的弦,AB=8,OC⊥AB于点D,交⊙O于点C,且CD=l,求⊙O的半径.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,我们定义直线y=ax﹣a为抛物线y=ax2+bx+c(a、b、c为常数,a≠0)的“梦想直线”;有一个顶点在抛物线上,另有一个顶点在y轴上的三角形为其“梦想三角形”.

已知抛物线y=﹣
x2﹣
x+2
与其“梦想直线”交于A、B两点(点A在点B的左侧),与x轴负半轴交于点C.
(1)填空:该抛物线的“梦想直线”的解析式为 , 点A的坐标为 , 点B的坐标为;
(2)如图,点M为线段CB上一动点,将△ACM以AM所在直线为对称轴翻折,点C的对称点为N,若△AMN为该抛物线的“梦想三角形”,求点N的坐标;
(3)当点E在抛物线的对称轴上运动时,在该抛物线的“梦想直线”上,是否存在点F,使得以点A、C、E、F为顶点的四边形为平行四边形?若存在,请直接写出点E、F的坐标;若不存在,请说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,过点A0(2,0)作直线l:y=
x的垂线,垂足为点A1 , 过点A1作A1A2⊥x轴,垂足为点A2 , 过点A2作A2A3⊥l,垂足为点A3 , …,这样依次下去,得到一组线段:A0A1 , A1A2 , A2A3 , …,则线段A2016A2107的长为( )
A.(
)2015
B.(
)2016
C.(
)2017
D.(
)2018 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD中,BC=2,点M是边AB的中点,连接DM,DM与AC交于点P,点E在DC上,点F在DP上,且∠DFE=45°.若PF=
,则CE= . 
-
科目: 来源: 题型:
查看答案和解析>>【题目】某商店购买一批单价为20元的日用品,如果以单价30元销售,那么半月内可以售出400件.据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高一元,销售量相应减少20件.如何提高销售价,才能在半月内获得最大利润?
相关试题