【题目】如图,已知OM⊥ON,垂足为O,点A、B分别是射线OM、ON上的一点(O点除外).
(1)如图①,射线AC平分∠OAB,是否存在点C,使得BC所在的直线也平分以B为顶点的某一个角α(0°<α<180°),若存在,则∠ACB= ;
(2)如图②,P为平面上一点(O点除外),∠APB=90°,且OA≠AP,分别画∠OAP、∠OBP的平分线AD、BE,交BP、OA于点D、E,试简要说明AD∥BE的理由;
(3)在(2)的条件下,随着P点在平面内运动,AD、BE的位置关系是否发生变化?请利用图③画图探究,如果不变,直接回答;如果变化,画出图形并直接写出AD、BE位置关系.
![]()
参考答案:
【答案】(1)存在;45°或135°;(2)详见解析;(3)点P一直在以AB为直径的圆上,当P在直径AB的上方时,如图2,有AD∥BE,当P在直径AB的下方时,如图3,有AD⊥BE,
【解析】
(1)分两种情况讨论:①先根据垂直的定义可得:∠AOB=90°,再根据角平分线的定义得:∠ABC+∠BAC=
(∠ABO+∠BAO)=45°,由三角形内角和定理可得结论;②根据三角形外角的性质和角平分线的定义,可得结论;
(2)证明∠OAD=∠OEB,可得:AD∥BE;
(3)先根据∠AOB=∠APB=90°,证明O、A、P、B四点共圆,即点P一直在以AB为直径的圆上,通过画图可知:当P在直径AB的上方时,如图2,有AD∥BE,当P在直径AB的下方时,如图3,有AD⊥BE.
解:(1)存在,
有两种情况:①当BC平分∠ABO时,如图1,
∵∠AOB=90°,
∴∠BAO+∠ABO=90°,
∵AC平分∠BAO,BC平分∠ABO,
∴∠BAC=
,∠ABC=
∠ABO,
∴∠BAC+∠ABC=
(∠BAO+∠ABO)=45°,
∴∠ACB=180°﹣45°=135°;
②如下图,当CB平分∠ABN时,
![]()
∵∠ABN=90°+∠BAO,
∵AC平分∠BAO,
∴2∠ABE=90°+2∠CAB,
∴∠ABE=45°+∠CAB,
∴∠ACB=∠ABE﹣∠CAB=45°,
综上,∠ACB的度数为45°或135°;
故答案为:45°或135°;
(2)如图2,∵∠AOB=∠P=90°,
∴∠OAP+∠OBP=180°,
∴
∠OAP+
∠OBP=90°,
∵AD平分∠OAP,BE平分∠OBP,
∴∠OAD=
∠OAP=90°﹣
,∠OBE=
∠OBP,
∵∠OBE+∠OEB=90°,
∴∠OEB=90°﹣∠OBE=90°﹣
∠OBP,
∴∠OAD=∠OEB,
∴AD∥BE;
(3)∵∠AOB=∠APB=90°,
∴点P一直在以AB为直径的圆上,
当P在直径AB的上方时,如图2,有AD∥BE,
当P在直径AB的下方时,如图3,有AD⊥BE,
理由是:∵∠OAP=∠OBP,
∵AD平分∠OAP,BE平分∠OBP,
∴∠PAD=
∠OAP,∠DBE=
∠OBP,
∴∠PAD=∠DBE,
∵∠ADP=∠BDG,
∴∠APB=∠AGB,
∴AD⊥BE.
![]()
![]()
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校学生志愿服务小组在“学雷锋”活动中购买了一批牛奶到江阴儿童福利院看望孤儿.如果分给每位儿童5盒牛奶,那么剩下18盒牛奶;如果分给每位儿童6盒牛奶,那么最后一位儿童分不到6盒,但至少能有3盒.则这个儿童福利院的儿童最少有________个,最多有________个.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某工厂现有甲种原料360千克,乙种原料290千克,计划利用这两种原料生产A、B两种产品共50件,已知生产一件A种产品用甲种原料9千克,乙种原料3千克,可获利700元;生产一件B种产品用甲种原料4千克,乙种原料10千克,可获利1200元.
(1)按要求安排A、B两种产品的生产件数,有哪几种方案?请你设计出来;
(2)设生产A、B两种产品总利润为y元,其中一种产品生产件数为x件,试写出y与x之间的函数关系式,并利用函数的性质说明那种方案获利最大?最大利润是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知关于x的一元二次方程x2+(2m+1)x+m2-4=0.
(1)当m为何值时,方程有两个不相等的实数根?
(2)若边长为5的菱形的两条对角线的长分别为方程两根的2倍,求m的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1) (-1)0+2-2-(-1)2012 (2)(2x2y)2 ·(-6xy4)÷(24x4y5)
(3)x 2-(x+2)(x-2) (4)(3-2x)(3+2x)+(2x-1)2
(5)(x-2)(x+2)-(x+1)(x-3)
-
科目: 来源: 题型:
查看答案和解析>>【题目】先化简,后求值
(1)(2a-3b)(3b+2a)-(a-2b)2,其中:a=-2,b=3;
(2)[(xy+2)(xy-2)-2x2y2+4]÷(xy),其中x=10,y=-
. -
科目: 来源: 题型:
查看答案和解析>>【题目】乘法公式的探究及应用.

(1)如图1,可以求出阴影部分的面积是 (写成两数平方差的形式);
(2)如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的宽是 ,长是 ,面积是 (写成多项式乘法的形式);
(3)比较左、右两图的阴影部分面积,可以得到乘法公式 (用式子表达).
相关试题