【题目】对于二次函数
和一次函数
,把
称为这两个函数的“再生二次函数”,其中t是不为零的实数,其图象记作抛物线L.现有点A(2,0)和抛物线L上的点B(﹣1,n),请完成下列任务:
【尝试】(1)当t=2时,抛物线
的顶点坐标为 ;
(2)判断点A (填是或否)在抛物线L上;
(3)n的值是 ;
【发现】通过(2)和(3)的演算可知,对于t取任何不为零的实数,抛物线L总过定点,坐标为 .
【应用】二次函数
是二次函数
和一次函数
的一个“再生二次函数”吗?如果是,求出t的值;如果不是,说明理由.
参考答案:
【答案】【尝试】(1,-2) 是 n=6;【发现】 (2,0)、(﹣1,6);【应用】不是 理由见解析.
【解析】试题分析:
【尝试】
(1)将t的值代入“再生二次函数”中,通过配方可得到顶点的坐标;
(2)将点A的坐标代入抛物线E上直接进行验证即可;
(3)已知点B在抛物线E上,将该点坐标代入抛物线E的解析式中直接求解,即可得到n的值.
【发现】
将抛物线E展开,然后将含t值的式子整合到一起,令该式子为0(此时无论t取何值都不会对函数值产生影响),即可求出这个定点的坐标.
【应用】
将【发现】中得到的两个定点坐标代入二次函数y=-3x2+5x+2中进行验证即可.
解:(1)将t=2代入抛物线E中,得:y=t(x2-3x+2)+(1-t)(-2x+4)=2x2-4x=2(x-1)2-2,
∴此时抛物线的顶点坐标为:(1,-2);
(2)点A在抛物线E上,
理由如下:∵将x=2代入y=t(x2-3x+2)+(1-t)(-2x+4),得 y=0,
∴点A(2,0)在抛物线E上.
(3)∵点B(-1,n)在抛物线E上,
∴将x=-1代入抛物线E的表达式中,
得:n=t(x2-3x+2)+(1-t)(-2x+4)=6.
∵将抛物线E的表达式展开,得:
y=t(x2-3x+2)+(1-t)(-2x+4)=t(x-2)(x+1)-2x+4
∴抛物线E必过定点(2,0)、(-1,6);
(4)不是.
∵将x=-1代入y=-3x2+5x+2,得y=-6≠6,
∴二次函数y=-3x2+5x+2的图象不经过点B.
∴二次函数y=-3x2+5x+2不是二次函数y=x2-3x+2和一次函数y=-2x+4的一个“再生二次函数”.
-
科目: 来源: 题型:
查看答案和解析>>【题目】关于x的一元二次方程x2+4kx﹣1=0根的情况是( )
A.有两个不相等的实数根
B.有两个相等的实数根
C.没有实数根
D.无法判断 -
科目: 来源: 题型:
查看答案和解析>>【题目】某商店经销一种双肩包,已知这种双肩包的成本价为每个30元.市场调查发现,这种双肩包每天的销售量y(单位:个)与销售单价x(单位:元)有如下关系:y=-x+60(30≤x≤60).
设这种双肩包每天的销售利润为w元.
(1)求w与x之间的函数解析式;
(2)这种双肩包销售单价定为多少元时,每天的销售利润最大?最大利润是多少元?
(3)如果物价部门规定这种双肩包的销售单价不高于48元,该商店销售这种双肩包每天要获得200元的销售利润,销售单价应定为多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在某校开展的“书香校园”读书活动中,学校为了解八年级学生的读书情况,随机调查了八年级50名学生每学期每人读书的册数,绘制统计表如下:
册数
0
1
2
3
4
人数
4
12
16
17
1
则这50个样本数据的众数和中位数分别是( )
A.17,16
B.3,2.5
C.2,3
D.3,2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,Rt△AOB中,AB⊥OB,且AB=OB=3,设直线
截此三角形所得阴影部分的面积为S,则S与t之间的函数关系的图象为下列选项中的( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AC=6,BC=8,OA=2,求线段DE的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】请阅读下列材料:
问题:如图1,在等边三角形ABC内有一点P,且PA=2,PB=
,PC=1、求∠BPC度数的大小和等边三角形ABC的边长.李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图2),连接PP′,可得△P′PC是等边三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可证),从而得到∠BPC=∠AP′B=__________;,进而求出等边△ABC的边长为__________;
问题得到解决.
请你参考李明同学的思路,探究并解决下列问题:如图3,在正方形ABCD内有一点P,且PA=
,BP=
,PC=1.求∠BPC度数的大小和正方形ABCD的边长.
相关试题