【题目】某市种植某种绿色蔬菜,全部用来出口.为了扩大出口规模,该市决定对这种蔬菜的种植实行政府补贴,规定每种植-亩这种蔬菜一次性补贴菜农若干元.经调查,种植亩数y(亩)与补贴数额x(元)之间大致满足如图1所示的一次函数关系.随着补贴数额x的不断增大,出口量也不断增加,但每亩蔬菜的收益z(元)会相应降低,且z与x之间也大致满足如图2所示的一次函数关系.
(1)在政府未出台补贴措施前,该市种植这种蔬菜的总收益额为多少?
(2)分别求出政府补贴政策实施后,种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式;
(3)要使全市这种蔬菜的总收益w(元)最大,政府应将每亩补贴数额x定为多少?并求出总收益w的最大值.
![]()
参考答案:
【答案】(1)2400000元;(2)种植亩数与政府补贴的函数关系为:y=8x+800;每亩蔬菜的收益与政府补贴的函数关系为z=-3x+3000(x>0);(3)政府每亩补贴450元时,总收益额最大,为7260000元.
【解析】
试题分析:(1)根据题意可知直接计算这种蔬菜的收益额为3000×800=2400000(元);
(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:y=kx+800,z=k1x+3000,并根据图象上点的坐标利用待定系数法求函数的解析式即可;
(3)表示出蔬菜的总收益w(元)与x之间的关系式,w=-24x2+21600x+2400000,利用二次函数最值问题求最大值.
试题解析:(1)政府没出台补贴政策前,这种蔬菜的收益额为3000×800=2400000(元)
(2)设种植亩数y和每亩蔬菜的收益z与政府补贴数额x之间的函数关系式分别为:
y=kx+800,z=k1x+3000,
分别把点(50,1200),(100,2700)代入得,
50k+800=1200,100k1+3000=2700,
解得:k=8,k1=-3,
种植亩数与政府补贴的函数关系为:y=8x+800
每亩蔬菜的收益与政府补贴的函数关系为z=-3x+3000(x>0)
(3)由题意:
w=yz=(8x+800)(-3x+3000)
=-24x2+21600x+2400000
=-24(x-450)2+7260000,
∴当x=450,即政府每亩补贴450元时,总收益额最大,为7260000元.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(2y)2(﹣3y)+(4y5)÷2y2
-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了选拔学生参加我市2011年无线电测向比赛中的装机比赛,教练对甲、乙两选手平时五次训练成绩进行统计,两选手五次训练的平均成绩均为30分钟,方差分别是S甲2=51、S乙2=12.则甲、乙两选手成绩比较稳定的是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知一元二次方程
有两个不相等的实数根.(1)求
的取值范围;(2)如果
是符合条件的最大整数,且一元二次方程
与
有一个相同的根,求此时
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】某商店经销一批小商品,每件商品的成本为8元.据市场分析,销售单价定为10元时,每天能售出200件;现采用提高商品售价,减少销售量的办法增加利润,若销售单价每涨1元,每天的销售量就减少20件.
设销售单价定为x元.据此规律,请回答:
(1)商店日销售量减少___________件,每件商品盈利___________元(用含x的代数式表示);
(2)针对这种小商品的销售情况,该商店要保证每天盈利640元,同时又要使顾客得到实惠,那么销售单价应定为多少元?

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知函数y=
(k为常数).(1)k为何值时,该函数是正比例函数;
(2)k为何值时,正比例函数过第一、三象限,写出正比例函数解析式;
(3)k为何值时,正比例函数y随x的增大而减小,写出正比例函数的解析式.
-
科目: 来源: 题型:
查看答案和解析>>【题目】先化简,再求值:[(a﹣2b)2﹣(a﹣4b)(3a﹣b)]÷(2a),其中a是27的立方根,b是4的算术平方根.
相关试题