【题目】某商家计划从厂家采购空调和冰箱两种产品共20台,空调的采购单价y1(元/台)与采购数量x1(台)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);冰箱的采购单价y2(元/台)与采购数量x2(台)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).
(1)经商家与厂家协商,采购空调的数量不少于冰箱数量的
,且空调采购单价不低于1200元,问该商家共有几种进货方案?
(2)该商家分别以1760元/台和1700元/台的销售单价售出空调和冰箱,且全部售完.在(1)的条件下,问采购空调多少台时总利润最大?并求最大利润.
参考答案:
【答案】
(1)解:设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,
由题意得,
,
解不等式①得,x≥11,
解不等式②得,x≤15,
所以,不等式组的解集是11≤x≤15,
∵x为正整数,
∴x可取的值为11、12、13、14、15,
所以,该商家共有5种进货方案
(2)解:设总利润为W元,空调的采购数量为x台,
y2=﹣10x2+1300=﹣10(20﹣x)+1300=10x+1100,
则W=(1760﹣y1)x1+(1700﹣y2)x2,
=1760x﹣(﹣20x+1500)x+(1700﹣10x﹣1100)(20﹣x),
=1760x+20x2﹣1500x+10x2﹣800x+12000,
=30x2﹣540x+12000,
=30(x﹣9)2+9570,
当x>9时,W随x的增大而增大,
∵11≤x≤15,
∴当x=15时,W最大值=30(15﹣9)2+9570=10650(元),
答:采购空调15台时,获得总利润最大,最大利润值为10650元
【解析】(1)设空调的采购数量为x台,则冰箱的采购数量为(20﹣x)台,然后根据数量和单价列出不等式组,求解得到x的取值范围,再根据空调台数是正整数确定进货方案;(2)设总利润为W元,根据总利润等于空调和冰箱的利润之和整理得到W与x的函数关系式并整理成顶点式形式,然后根据二次函数的增减性求出最大值即可.
【考点精析】关于本题考查的一元一次不等式组的应用,需要了解1、审:分析题意,找出不等关系;2、设:设未知数;3、列:列出不等式组;4、解:解不等式组;5、检验:从不等式组的解集中找出符合题意的答案;6、答:写出问题答案才能得出正确答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市为节约水资源,制定了新的居民用水收费标准,按照新标准,用户每月缴纳的水费y元与每月用水量xm3之间的关系如图所示.
(1)求关于x的函数解析式;
(2)若某用户二、三月份共用水22m3(二月份用水量比三月份用水量多),缴纳水费共35元,则该用户二月份的用水量是多少m3?

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)问题背景:已知,如图1,等腰△ABC中,AB=AC,∠BAC=120°,AD⊥BC于点D,AB=a,△ABC的面积为S,则有BC=
a,S=
a2.(2)迁移应用:如图2,△ABC和△ADE都是等腰三角形,∠BAC=∠DAE=120°,D,E,C三点在同一条直线上,连接BD.
①求证:△ADB≌△AEC;
②求∠ADB的度数.
③若AD=2,BD=4,求△ABC的面积.
(3)拓展延伸:如图3,在等腰△ABC中,∠BAC=120°,在∠BAC内作射线AM,点D与点B关于射线AM轴对称,连接CD并延长交AM于点E,AF⊥CD于F,连接AD,BE.
①求∠EAF的度数;
②若CD=5,BD=2,求BC的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于E,连接AD.

(1)求证:△CDE∽△CAD;
(2)若AB=2,AC=2
,求AE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知直线l1∥l2 , 线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D、E(点A、E位于点B的两侧),满足BP=BE,连接AP、CE.

(1)求证:△ABP≌△CBE;
(2)连结AD、BD,BD与AP相交于点F.如图2.
①当
=2时,求证:AP⊥BD;
②当
=n(n>1)时,设△PAD的面积为S1 , △PCE的面积为S2 , 求
的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】数轴是一个非常重要的数学工具,通过它把数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.已知数轴上有点A和点B,点A和点B分别表示数-20和40,请解决以下问题:
(1)请画出数轴,并标明A、B两点;
(2)若点P、Q分别从点A、点B同时出发,相向而行,点P、Q移动的速度分别为每秒4个单位长度和2个单位长度.问:当P、Q相遇于点C时,C所对应的数是多少?
(3)若点P、Q分别从点A、点B同时出发,沿x轴正方向同向而行,点P、Q移动的速度分别为每秒4个单位长度和2个单位长度.问:当P、Q相遇于点D时,D所对应的数是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知抛物线y=ax2+bx+c与x轴的一个交点为A(3,0),与y轴的交点为B(0,3),其顶点为C,对称轴为x=1.

(1)求抛物线的解析式;
(2)已知点M为y轴上的一个动点,当△ABM为等腰三角形时,求点M的坐标;
(3)将△AOB沿x轴向右平移m个单位长度(0<m<3)得到另一个三角形,将所得的三角形与△ABC重叠部分的面积记为S,用m的代数式表示S.
相关试题