【题目】如图,四边形ABCD是边长为60cm的正方形硬纸片,剪掉阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使A、B、C、D四个点重合于图中的点P,正好形成一个底面是正方形的长方体包装盒.![]()
(1)若折叠后长方体底面正方形的面积为1250cm2 , 求长方体包装盒的高;
(2)设剪掉的等腰直角三角形的直角边长为x(cm),长方体的侧面积为S(cm2),求S与x的函数关系式,并求x为何值时,S的值最大.
参考答案:
【答案】
(1)
解:如图
![]()
设剪掉阴影部分的每个等腰直角三角形的腰长为xcm,则NP=
xcm,
DP=
,QM=PW=
×
,
由题意得:
.
解得,
(超过60,故不符合题意舍去),
答:长方体包装盒的高为5
cm.
另法:∵由已知得底面正方形的边长为
=25
,
∴AN=25
×
=25.
∴PN=60﹣25×2=10.
∴PQ=10×
=5
(cm).
答:长方体包装盒的高为5
cm.
(2)
解:由题意得,S=4×S四边形QPWM=4×PWQP,
∵PW=
×
,QP=x,
∴
.
∵a=﹣4<0,
∴当x=15
时,S有最大值.
【解析】(1)根据等腰直角三角形的性质得出NP的长度,再利用正方形性质表示出底面正方形面积进而得出答案即可;(2)表示出长方体的侧面积进而利用二次函数的最值求法得出答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:
(1)在第二象限内的格点上画一点C, 使点C与线段AB组成一个以AB为底的等腰三角形, 且腰长是无理数, 则C点坐标是____________,△ABC的面积是_____________________.
(2)画出△ABC,以点C为旋转中心、旋转180°后的△A′B′C,连结AB′和A′B, 则四边形AB A′B′的形状是何特殊四边形?___________________.
(3)在坐标轴上是否存在P点,使得△PAB与△CAB的面积相等?若存在,请直接写出点P的坐标(写出一种情况即可)___________________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校为了了解初三年级1000名学生的身体健康情况,从该年级随机抽取了若干名学生,将他们按体重(均为整数,单位:kg)分成五组(A:39.5~46.5;B:46.5~53.5;C:53.5~60.5;D:60.5~67.5;E:67.5~74.5),并依据统计数据绘制了如下两幅尚不完整的统计图.

解答下列问题:
(1)这次抽样调查的样本容量是 ,并补全频数分布直方图;
(2)C组学生的频率为 ,在扇形统计图中D组的圆心角是 度;
(3)请你估计该校初三年级体重超过60kg的学生大约有多少名?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,实线部分为某月牙形公园的轮廓示意图,它可看作是由⊙P上的一段优弧和⊙Q上的一段劣弧围成,⊙P与⊙Q的半径都是2km,点P在⊙Q上.

(1)求月牙形公园的面积;
(2)现要在公园内建一块顶点都在⊙P上的直角三角形场地ABC,其中∠C=90°,求场地的最大面积. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在矩形ABCD中,AD=4,M是AD的中点,点E是线段AB上一动点,连接EM并延长交线段CD的延长线于点F.


(1)如图1,求证:AE=DF;
(2)如图2,若AB=2,过点M作 MG⊥EF交线段BC于点G,判断△GEF的形状,并说明理由;
(3)如图3,若AB=
,过点M作 MG⊥EF交线段BC的延长线于点G.
①直接写出线段AE长度的取值范围;
②判断△GEF的形状,并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.
(1)求证:四边形BCED是平行四边形;
(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,已知抛物线y=ax2+bx+c经过点A(﹣3,0)、B(0,3)、C(1,0)三点.

(1)求抛物线的解析式和顶点D的坐标;
(2)如图1,将抛物线的对称轴绕抛物线的顶点D顺时针旋转60°,与直线y=﹣x交于点N.在直线DN上是否存在点M,使∠MON=75°.若存在,求出点M的坐标;若不存在,请说明理由;
(3)点P、Q分别是抛物线y=ax2+bx+c和直线y=﹣x上的点,当四边形OBPQ是直角梯形时,求出点Q的坐标.
相关试题